PyTorch 中nn.Embedding

核心参数与用法

nn.Embedding的核心参数:

num_embeddings:嵌入表的大小(即离散特征的总类别数,如词汇表大小)。

embedding_dim:每个嵌入向量的维度(输出向量的长度)。

padding_idx(可选):指定一个索引,其对应的嵌入向量将始终为 0(用于处理填充符号)。

css 复制代码
import torch
import torch.nn as nn

# 定义嵌入层:词汇表大小为10(索引0-9),嵌入维度为3
embedding = nn.Embedding(num_embeddings=10, embedding_dim=3)

# 输入:形状为(batch_size, seq_len)的整数张量(索引必须在[0, num_embeddings-1]范围内)
input_indices = torch.tensor([[1, 3, 5], [2, 4, 6]])  # 批量大小为2,序列长度为3

# 前向传播:获取嵌入向量
output_embeddings = embedding(input_indices)

print("输入形状:", input_indices.shape)  # 输出:torch.Size([2, 3])
print("输出形状:", output_embeddings.shape)  # 输出:torch.Size([2, 3, 3])(每个索引被映射为3维向量)
print("输出内容:\n", output_embeddings)
css 复制代码
输入形状: torch.Size([2, 3])
输出形状: torch.Size([2, 3, 3])
输出内容:
 tensor([[[ 0.5095,  0.3979, -1.7759],
         [-0.1456,  1.6262,  0.3929],
         [ 0.8530, -0.6685,  1.6823]],

        [[ 1.0323, -0.0969, -0.6512],
         [ 0.2309, -1.5649,  0.7431],
         [-0.3285, -0.2512, -0.1028]]], grad_fn=<EmbeddingBackward0>)
Parameter containing:
tensor([[-1.8749,  0.2108,  0.4401],
        [ 0.5095,  0.3979, -1.7759],
        [ 1.0323, -0.0969, -0.6512],
        [-0.1456,  1.6262,  0.3929],
        [ 0.2309, -1.5649,  0.7431],
        [ 0.8530, -0.6685,  1.6823],
        [-0.3285, -0.2512, -0.1028],
        [-0.1919,  0.2022, -0.2425],
        [-0.7266,  1.3337, -0.7980],
        [ 0.0791, -0.7093,  0.2264]], requires_grad=True)
相关推荐
Pyeako4 小时前
深度学习--BP神经网络&梯度下降&损失函数
人工智能·python·深度学习·bp神经网络·损失函数·梯度下降·正则化惩罚
哥布林学者4 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(四)分层 softmax 和负采样
深度学习·ai
Yeats_Liao7 小时前
开源生态资源:昇腾社区ModelZoo与DeepSeek的最佳实践路径
python·深度学习·神经网络·架构·开源
却道天凉_好个秋7 小时前
目标检测算法与原理(三):PyTorch实现迁移学习
pytorch·算法·目标检测
不解风水8 小时前
《深度学习入门:基于 Python 的理论与实现》(斋藤康毅)
人工智能·python·深度学习
brent4238 小时前
DAY54 CBAM注意力
人工智能·深度学习·机器学习
Python算法实战8 小时前
《大模型面试宝典》(2026版) 正式发布!
人工智能·深度学习·算法·面试·职场和发展·大模型
Blossom.1189 小时前
AI Agent智能办公助手:从ChatGPT到真正“干活“的系统
人工智能·分布式·python·深度学习·神经网络·chatgpt·迁移学习
应用市场9 小时前
Adam优化器深度解析:从数学原理到PyTorch源码实
人工智能·pytorch·python
卡尔AI工坊10 小时前
Andrej Karpathy:过去一年大模型的六个关键转折
人工智能·经验分享·深度学习·机器学习·ai编程