【论文笔记】SpaRC: Sparse Radar-Camera Fusion for 3D Object Detection

原文链接:https://arxiv.org/pdf/2411.19860

0. 概述

图像由卷积特征提取器编码,而雷达点则由基于Transformer的点编码器处理。随后进行两阶段融合:第一阶段将雷达特征投影到图像上关联语义特征,第二阶段则从透视提案初始化稀疏3D物体查询,通过交叉注意力聚合多模态特征。距离自适应的雷达细化基于距离指导物体与雷达的交互,透视空间中的可变形注意力则捕捉语义特征。

1. 雷达点编码器

本文使用轻量化的点Transformer提取雷达特征。通过空间填充曲线和序列化邻域映射,编码器将无结构的点转化为稀疏但信息密集的表达。将点分组为不重叠的区块,进行区块内的注意力以建模空间关系。

3D点和物体查询被编码到相同的位置嵌入空间中,以在后续的融合阶段实现直接交互。

2. 稀疏视锥融合(SFF)

编码的雷达特征向量首先被投影到各相机的视锥空间中,将深度与水平索引转换为可学习位置编码。图像特征由下采样像素的位置来编码。对每个图像列,查询垂直维度上最近的 K K K个雷达点,并通过交叉注意力融合。

3. 距离自适应雷达(RAR)聚合

本文使用距离自适应的雷达聚合解码层,基于空间关系动态调整特征交互。

具体来说,距离感知的注意力机制基于雷达点与物体中心的接近程度来自适应地调整权重:
A t t n ( q , k , v ) = s o f t m a x ( q k T d − α ∥ p q − p k ∥ 2 r max ⁡ ) v Attn(q,k,v)=softmax(\frac{qk^T}{\sqrt{d}}-\alpha\frac{\|p_q-p_k\|2}{r{\max}})v Attn(q,k,v)=softmax(d qkT−αrmax∥pq−pk∥2)v

其中 p q , p k p_q,p_k pq,pk分别表示物体查询和雷达点的3D位置, r max ⁡ r_{\max} rmax为最大检测距离。 q ∈ R N q × d q\in\mathbb R^{N_q\times d} q∈RNq×d, k , v ∈ R N k × d k,v\in\mathbb R^{N_k\times d} k,v∈RNk×d。 α \alpha α控制空间偏置的强度。

4. 局部自注意力(LSA)

传统的DETR类结构使用全局自注意力交互所有查询,但本文发现查询只需要与空间邻居交互。故LSA将每个查询限制为仅与其 K K K近邻查询交互。

此外,本文还重新安排了解码块的结构,将自注意力放置于跨模态特征聚合之后,从而使查询先收集相关特征,再根据空间关系确定重复检测和误检。

相关推荐
知乎的哥廷根数学学派1 天前
基于多模态特征融合和可解释性深度学习的工业压缩机异常分类与预测性维护智能诊断(Python)
网络·人工智能·pytorch·python·深度学习·机器学习·分类
wyw00001 天前
目标检测之SSD
人工智能·目标检测·计算机视觉
梦梦代码精1 天前
《全栈开源智能体:终结企业AI拼图时代》
人工智能·后端·深度学习·小程序·前端框架·开源·语音识别
kebijuelun1 天前
FlashInfer-Bench:把 AI 生成的 GPU Kernel 放进真实 LLM 系统的“闭环引擎”
人工智能·gpt·深度学习·机器学习·语言模型
亚里随笔1 天前
超越LoRA:参数高效强化学习方法的全面评估与突破
人工智能·深度学习·机器学习·lora·rl
雍凉明月夜1 天前
深度学习之目标检测yolo算法Ⅱ(v4)
深度学习·算法·yolo·目标检测
一瞬祈望1 天前
⭐ 深度学习入门体系(第 20 篇): 如何从 0 到 1 训练一个稳定、可复现的深度学习模型
人工智能·深度学习
youcans_1 天前
【DeepSeek论文精读】17. 通过可扩展查找的条件记忆:大语言模型稀疏化的新维度
论文阅读·人工智能·语言模型·长短时记忆网络·稀疏
燕双嘤1 天前
深度学习:激活函数,优化器
人工智能·深度学习
HyperAI超神经1 天前
实现高选择性底物设计,MIT联手哈佛用生成式AI发现全新蛋白酶切割模式
人工智能·深度学习·机器学习·开源·ai编程