深度学习o

  1. 神经网络模型原理讲解

展平了模型的复杂结构,重点介绍了一个包含输入、一个展平层、三个全连接层以及softmax输出层的经典网络架构。

明确了各全连接层神经元数量的设计原则:早期的特征提取层(如第一个全连接层)神经元数量较多,以捕捉复杂的特征;后续的分类层则逐步减少至最终输出的类别数(此处为10),并通过对输出的置信度进行求和来确定最终结果。

残差模块(ResNet)是将原始输入与经过卷积操作后的结果一同送入后继层次,以解决深层网络中的梯度消失问题。

  1. 代码实现与依赖环境

PyTorch框架的代码实现流程:包含了网络类的定义、前向传播(正向传播)和反向传播机制

提到了使用GPU进行加速时,需要安装CUDA和cuDNN,这会显著提升模型训练和推理的速度

  1. 网络正向传播过程回顾

讨论了网络信息从输入到输出的正向传播路径

正向传播的具体步骤包括:经过卷积层、激活层、池化层,再到全连接层进行处理

  1. 最终输出结果的获取方法

在计算完损失函数后,还需进行一次完整的正向传播,以获取模型的最终输出

如何从多维的结果中提取单个预测值:在指定的维度(轴一方向)上取最大值。

相关推荐
软件算法开发3 小时前
基于蜣螂优化的LSTM深度学习网络模型(DBO-LSTM)的一维时间序列预测算法matlab仿真
深度学习·matlab·lstm·dbo-lstm·蜣螂优化·一维时间序列预测
网安INF3 小时前
【论文阅读】-《Attention Is All You Need》(Transformer)
论文阅读·人工智能·深度学习·机器学习·transformer
wan5555cn3 小时前
无人机表演行业二手设备市场与性价比分析
笔记·深度学习·音视频·无人机
en-route5 小时前
从零开始学神经网络——前馈神经网络
人工智能·深度学习·神经网络
人工智能培训8 小时前
Transformer-位置编码(Position Embedding)
人工智能·深度学习·大模型·transformer·embedding·vision
我是个菜鸡.8 小时前
视觉/深度学习/机器学习相关面经总结(3)(持续更新)
人工智能·深度学习·机器学习
缘友一世8 小时前
PyTorch深度学习实战【12】之基于RNN的自然语言处理入门
pytorch·rnn·深度学习
青春不败 177-3266-05209 小时前
基于PyTorch深度学习遥感影像地物分类与目标检测、分割及遥感影像问题深度学习优化实践技术应用
人工智能·pytorch·深度学习·目标检测·生态学·遥感
en-route9 小时前
从零开始学神经网络——GRU(门控循环单元)
人工智能·深度学习·gru