深度学习o

  1. 神经网络模型原理讲解

展平了模型的复杂结构,重点介绍了一个包含输入、一个展平层、三个全连接层以及softmax输出层的经典网络架构。

明确了各全连接层神经元数量的设计原则:早期的特征提取层(如第一个全连接层)神经元数量较多,以捕捉复杂的特征;后续的分类层则逐步减少至最终输出的类别数(此处为10),并通过对输出的置信度进行求和来确定最终结果。

残差模块(ResNet)是将原始输入与经过卷积操作后的结果一同送入后继层次,以解决深层网络中的梯度消失问题。

  1. 代码实现与依赖环境

PyTorch框架的代码实现流程:包含了网络类的定义、前向传播(正向传播)和反向传播机制

提到了使用GPU进行加速时,需要安装CUDA和cuDNN,这会显著提升模型训练和推理的速度

  1. 网络正向传播过程回顾

讨论了网络信息从输入到输出的正向传播路径

正向传播的具体步骤包括:经过卷积层、激活层、池化层,再到全连接层进行处理

  1. 最终输出结果的获取方法

在计算完损失函数后,还需进行一次完整的正向传播,以获取模型的最终输出

如何从多维的结果中提取单个预测值:在指定的维度(轴一方向)上取最大值。

相关推荐
yLDeveloper31 分钟前
从模型评估、梯度难题到科学初始化:一步步解析深度学习的训练问题
深度学习
Coder_Boy_1 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
2401_836235861 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs1 小时前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习
2的n次方_2 小时前
CANN ascend-transformer-boost 架构解析:融合注意力算子管线、长序列分块策略与图引擎协同机制
深度学习·架构·transformer
人工智能培训2 小时前
具身智能视觉、触觉、力觉、听觉等信息如何实时对齐与融合?
人工智能·深度学习·大模型·transformer·企业数字化转型·具身智能
pp起床4 小时前
Gen_AI 补充内容 Logit Lens 和 Patchscopes
人工智能·深度学习·机器学习
阿杰学AI4 小时前
AI核心知识91——大语言模型之 Transformer 架构(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·自然语言处理·aigc·transformer
芷栀夏5 小时前
CANN ops-math:筑牢 AI 神经网络底层的高性能数学运算算子库核心实现
人工智能·深度学习·神经网络
Yeats_Liao7 小时前
评估体系构建:基于自动化指标与人工打分的双重验证
运维·人工智能·深度学习·算法·机器学习·自动化