深度学习o

  1. 神经网络模型原理讲解

展平了模型的复杂结构,重点介绍了一个包含输入、一个展平层、三个全连接层以及softmax输出层的经典网络架构。

明确了各全连接层神经元数量的设计原则:早期的特征提取层(如第一个全连接层)神经元数量较多,以捕捉复杂的特征;后续的分类层则逐步减少至最终输出的类别数(此处为10),并通过对输出的置信度进行求和来确定最终结果。

残差模块(ResNet)是将原始输入与经过卷积操作后的结果一同送入后继层次,以解决深层网络中的梯度消失问题。

  1. 代码实现与依赖环境

PyTorch框架的代码实现流程:包含了网络类的定义、前向传播(正向传播)和反向传播机制

提到了使用GPU进行加速时,需要安装CUDA和cuDNN,这会显著提升模型训练和推理的速度

  1. 网络正向传播过程回顾

讨论了网络信息从输入到输出的正向传播路径

正向传播的具体步骤包括:经过卷积层、激活层、池化层,再到全连接层进行处理

  1. 最终输出结果的获取方法

在计算完损失函数后,还需进行一次完整的正向传播,以获取模型的最终输出

如何从多维的结果中提取单个预测值:在指定的维度(轴一方向)上取最大值。

相关推荐
忙碌5441 小时前
AI大模型时代下的全栈技术架构:从深度学习到云原生部署实战
人工智能·深度学习·架构
听风吹等浪起2 小时前
基于改进TransUNet的港口船只图像分割系统研究
人工智能·深度学习·cnn·transformer
化作星辰3 小时前
深度学习_原理和进阶_PyTorch入门(2)后续语法3
人工智能·pytorch·深度学习
哥布林学者4 小时前
吴恩达深度学习课程二: 改善深层神经网络 第二周:优化算法(二)指数加权平均和学习率衰减
深度学习·ai
点云SLAM5 小时前
弱纹理图像特征匹配算法推荐汇总
人工智能·深度学习·算法·计算机视觉·机器人·slam·弱纹理图像特征匹配
Sunhen_Qiletian9 小时前
Python 类继承详解:深度学习神经网络架构的构建艺术
python·深度学习·神经网络
LHZSMASH!10 小时前
神经流形:大脑功能几何基础的革命性视角
人工智能·深度学习·神经网络·机器学习
忙碌54410 小时前
智能应用开发指南:深度学习、大数据与微服务的融合之道
大数据·深度学习·微服务
Dfreedom.10 小时前
Softmax 函数:深度学习中的概率大师
人工智能·深度学习·神经网络·softmax·激活函数
大明者省10 小时前
图像卷积操值超过了255怎么处理
深度学习·神经网络·机器学习