深度学习o

  1. 神经网络模型原理讲解

展平了模型的复杂结构,重点介绍了一个包含输入、一个展平层、三个全连接层以及softmax输出层的经典网络架构。

明确了各全连接层神经元数量的设计原则:早期的特征提取层(如第一个全连接层)神经元数量较多,以捕捉复杂的特征;后续的分类层则逐步减少至最终输出的类别数(此处为10),并通过对输出的置信度进行求和来确定最终结果。

残差模块(ResNet)是将原始输入与经过卷积操作后的结果一同送入后继层次,以解决深层网络中的梯度消失问题。

  1. 代码实现与依赖环境

PyTorch框架的代码实现流程:包含了网络类的定义、前向传播(正向传播)和反向传播机制

提到了使用GPU进行加速时,需要安装CUDA和cuDNN,这会显著提升模型训练和推理的速度

  1. 网络正向传播过程回顾

讨论了网络信息从输入到输出的正向传播路径

正向传播的具体步骤包括:经过卷积层、激活层、池化层,再到全连接层进行处理

  1. 最终输出结果的获取方法

在计算完损失函数后,还需进行一次完整的正向传播,以获取模型的最终输出

如何从多维的结果中提取单个预测值:在指定的维度(轴一方向)上取最大值。

相关推荐
WWZZ20259 分钟前
快速上手大模型:深度学习12(目标检测、语义分割、序列模型)
深度学习·算法·目标检测·计算机视觉·机器人·大模型·具身智能
浩浩的代码花园6 小时前
自研端侧推理模型实测效果展示
android·深度学习·计算机视觉·端智能
晨非辰6 小时前
C++ 波澜壮阔 40 年:从基础I/O到函数重载与引用的完整构建
运维·c++·人工智能·后端·python·深度学习·c++40周年
这张生成的图像能检测吗9 小时前
(论文速读)EfficientTrain++: 高效视觉骨干训练的通用课程学习
人工智能·深度学习·计算机视觉·训练方法
编程小白_正在努力中19 小时前
神经网络深度解析:从神经元到深度学习的进化之路
人工智能·深度学习·神经网络·机器学习
无风听海19 小时前
神经网络之经验风险最小化
人工智能·深度学习·神经网络
H***997621 小时前
月之暗面公开强化学习训练加速方法:训练速度暴涨97%,长尾延迟狂降93%
人工智能·深度学习·机器学习
FL16238631291 天前
无人机视角航拍河道漂浮物垃圾识别分割数据集labelme格式256张1类别
深度学习
青瓷程序设计1 天前
昆虫识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
小殊小殊1 天前
DeepSeek为什么这么慢?
人工智能·深度学习