Initializing K-means|初始化K-means


这是我在我的网站中截取的文章,有更多的文章欢迎来访问我自己的博客网站rn.berlinlian.cn,这里还有很多有关计算机的知识,欢迎进行留言或者来我的网站进行留言!!!


**一、**K-means 初始化的定义

K-means 的初始化是指在算法开始时,随机选择 KK 个数据点作为初始聚类中心。之后,算法会不断迭代,逐步调整这些中心的位置。

通俗理解:

先随便挑几个点当"代表",再通过不断"重新选代表",让每个小组里的成员和代表越来越接近。


**二、**K-means 初始化过程

  • 左侧文字部分

    1. 选择聚类数 K<m,其中 m 是样本数量。

    2. 随机挑选 K 个训练样本。

    3. 将这 K 个样本作为初始聚类中心 μ1,μ2,...,μk。

  • 右侧图示部分

    • 上图:黑点表示训练样本,红圈和蓝圈中各随机选出一个样本作为初始中心(红叉、蓝叉)。

    • 下图:红叉和蓝叉标记了两个被随机选出的初始聚类中心,其余黑点是待聚类的样本。


**三、**不同初始化的 K-means 聚类结果

  • 左侧:黑点为数据;标注 K=3。底部的 J(c(1),...,c(m),μ1,...,μK) 表示 K-means 的目标函数(由分配 c(i) 和中心 μk 决定)。

  • 右上(J1):出现三个紧凑的小簇(蓝/绿/红),每簇中心用"×"标出,辐射线连接到各自中心,蓝色大圈强调这一聚类结果对应的目标值为 J1。

  • 右下左(J2):多数样本被分到蓝簇,连线较长、形状拉伸,表示另一种初始化得到的聚类与其目标值 J2。

  • 右下右(J3):红簇沿水平方向分布较散,中心在中间(红"×"),蓝/绿簇在远处,表示第三种结果与其目标值 J3。

要点:同一数据、同一 K,不同初始化产生不同的簇划分与不同的目标值 J1,J2,J3;图中用蓝圈标出的结果表示被选中的那个。


**四、**K-means 的多次随机初始化与最小代价选择

  • 顶部:For i = 1 to 100(图中注记:可做 50--1000 次)------表示进行多次随机尝试。

  • 步骤1:Randomly initialize K-means. 用 k 个随机样本作为初始中心。

  • 步骤2:Run K-means. 运行到收敛,得到分配 c(1),...,c(m) 与中心 μ1,...,μK。

  • 步骤3:Compute cost function (distortion) 计算代价 J(c(1),...,c(m),μ1,...,μK)。

  • 大括号外:Pick set of clusters that gave lowest cost J ------从所有尝试中选取代价 J最小的聚类结果作为最终结果。


这是我在我的网站中截取的文章,有更多的文章欢迎来访问我自己的博客网站rn.berlinlian.cn,这里还有很多有关计算机的知识,欢迎进行留言或者来我的网站进行留言!!!


相关推荐
迅筑科技-RPT7 小时前
达索系统第7代解决方案3D UNIV+RSES——释放企业数据潜能,拥抱更值得信赖的工业AI
3d·ai·达索系统·迅筑科技·3d univ+rses
a1117767 小时前
医院挂号预约系统(开源 Fastapi+vue2)
前端·vue.js·python·html5·fastapi
0思必得07 小时前
[Web自动化] Selenium处理iframe和frame
前端·爬虫·python·selenium·自动化·web自动化
ar01237 小时前
AR远程协助作用
人工智能·ar
一匹电信狗8 小时前
【LeetCode_547_990】并查集的应用——省份数量 + 等式方程的可满足性
c++·算法·leetcode·职场和发展·stl
北京青翼科技8 小时前
PCIe接口-高速模拟采集—高性能计算卡-青翼科技高品质军工级数据采集板-打造专业工业核心板
图像处理·人工智能·fpga开发·信号处理·智能硬件
软件聚导航8 小时前
马年、我用AI写了个“打工了马” 小程序
人工智能·ui·微信小程序
鱼跃鹰飞8 小时前
Leetcode会员尊享100题:270.最接近的二叉树值
数据结构·算法·leetcode
陈天伟教授9 小时前
人工智能应用-机器听觉:7. 统计合成法
人工智能·语音识别
梵刹古音9 小时前
【C语言】 函数基础与定义
c语言·开发语言·算法