基于spark的基于可穿戴设备运动数据预测

基于spark的基于可穿戴设备运动数据预测

项目概况

**👇👇👇👇👇👇👇👇**

点这里,查看所有项目

**👆👆👆👆👆👆👆👆**

数据类型

可穿戴设备运动数据

开发环境

centos7

软件版本

python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8

开发语言

python、Scala

开发流程

数据上传(hdfs)->数据分析(spark)->机器学习(spark)->数据存储(mysql)->后端(flask)->前端(html+js+css)

可视化图表

操作步骤

python安装包

shell 复制代码
pip3 install pandas==2.0.3 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install flask==3.0.0 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install flask-cors==4.0.1 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install pymysql==1.1.0 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install pyecharts==2.0.4 -i https://pypi.tuna.tsinghua.edu.cn/simple

启动MySQL

shell 复制代码
# 查看mysql是否启动 启动命令: systemctl start mysqld.service
systemctl status mysqld.service
# 进入mysql终端
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
mysql -uroot -p123456

启动Hadoop

shell 复制代码
# 离开安全模式: hdfs dfsadmin -safemode leave
# 启动hadoop
bash /export/software/hadoop-3.2.0/sbin/start-hadoop.sh

准备目录

shell 复制代码
mkdir -p /data/jobs/project/
cd /data/jobs/project/

# 上传 "data" 目录下的 "wearable_sensor_data.csv" 文件/文件夹 到 "/data/jobs/project/" 目录

上传文件到hdfs

shell 复制代码
cd /data/jobs/project/

hdfs dfs -mkdir -p /data/input/
hdfs dfs -rm -r /data/input/*
hdfs dfs -put -f wearable_sensor_data.csv /data/input/
hdfs dfs -ls /data/input/

创建MySQL库

sql 复制代码
CREATE DATABASE IF NOT EXISTS echarts CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;

程序打包

shell 复制代码
cd /data/jobs/project/

# 对 "project-spark-sport-device-data-predict" 目录下的项目 "project-spark-sport-device-data-predict" 进行打包
# 打包命令: mvn clean package -Dmaven.test.skip=true

# 上传 "project-spark-sport-device-data-predict/target/" 目录下的 "project-spark-sport-device-data-predict-jar-with-dependencies.jar" 文件 到 "/data/jobs/project/" 目录

spark数据分析

shell 复制代码
cd /data/jobs/project/

spark-submit \
--master local[*] \
--class org.example.demo.SparkAnalysis \
/data/jobs/project/project-spark-sport-device-data-predict-jar-with-dependencies.jar /data/input/

机器学习

shell 复制代码
cd /data/jobs/project/

spark-submit \
--master local[*] \
--class org.example.demo.Main \
/data/jobs/project/project-spark-sport-device-data-predict-jar-with-dependencies.jar /data/input/

启动可视化

shell 复制代码
mkdir -p /data/jobs/project/myapp/
cd /data/jobs/project/myapp/

# 上传 "可视化" 目录下的 "所有" 文件和文件夹 到 "/data/jobs/project/" 目录

# windows本地运行: python app.py
python3 app.py pro
相关推荐
zxsz_com_cn30 分钟前
设备预测性维护的意义 工业设备预测性维护是什么
大数据
深蓝电商API31 分钟前
Scrapy+Rredis实现分布式爬虫入门与优化
分布式·爬虫·scrapy
samLi06201 小时前
【数据集】中国杰出青年名单数据集(1994-2024年)
大数据
成长之路5142 小时前
【数据集】分地市旅游收入数据集(2000-2024年)
大数据·旅游
回家路上绕了弯2 小时前
定期归档历史数据实战指南:从方案设计到落地优化
分布式·后端
大厂技术总监下海2 小时前
用户行为分析怎么做?ClickHouse + 嵌套数据结构,轻松处理复杂事件
大数据·数据结构·数据库
大厂技术总监下海2 小时前
大数据生态的“主动脉”:RocketMQ 如何无缝桥接 Flink、Spark 与业务系统?
大数据·开源·rocketmq
2501_933670792 小时前
2026年中专大数据专业可考取的证书
大数据
oMcLin3 小时前
如何在Ubuntu 22.04 LTS上优化PostgreSQL 14集群,提升大数据查询的响应速度与稳定性?
大数据·ubuntu·postgresql
信创天地3 小时前
核心系统去 “O” 攻坚:信创数据库迁移的双轨运行与数据一致性保障方案
java·大数据·数据库·金融·架构·政务