【泛3C篇】AI深度学习在手机背板外观缺陷检测应用方案

一、行业痛点

手机背板既是"颜值担当",又是"手感门面"。玻璃、陶瓷、玻纤、素皮多材质混线,出现字体偏位、透光、白点、黑点、划伤、毛丝、崩缺、卷边、字体积油、磨花、裂纹、颗粒、脏污、异色、缩水等30+微缺陷,传统2D+人工目检:
漏检率2%-5%,客诉索赔高;
单台CT 25-30 s,无法满足600 UPH高端产线节拍;
换色/换纹理需重新做光源夹具,停机>4 h。

二、技术方案

东声智能Handdle AI平台+"2D/2.5D/3D+穹顶拟形光源"一体化方案,实现手机背板360°零盲区、零漏检、一键换型。

1.光学成像

  • 穹顶仿形光源:16分区独立调光,消除玻璃反光、陶瓷高光、素皮纹理干扰;

  • 2D :捕捉异色、脏污、颗粒;

  • 2.5D条纹光:获取划痕、磨花、卷边深度信息;

  • 3D:测量崩缺

2."传统算法+AI算法" 双引擎

seg 分割:像素级定位白点、黑点、毛丝、裂纹;

实例检测:毫秒级框出字体偏位、透光、字体积油;

传统算法并行:OCR比对字符偏移≤0.1 mm;

零漏检机制:在线困难样本自动回灌,模型日迭代。

3.高速飞拍

四轴机器人+高精度相机,一次拍摄完成正反面+侧边。

4.一键换型

纹理/颜色/尺寸变更时,HanddleAl自动匹配新光学参数与AI模型,3分钟完成换型,0代码操作。

三、检测内容(100%在线全覆)

A. 印刷区

  1. 字体偏位(±0.05 mm)

  2. 透光/字体积油

  3. 字符缺失、毛刺

B. 表面缺陷

  1. 白点、黑点(φ≥0.05 mm)

  2. 划伤、磨花、裂纹

  3. 毛丝、卷边、崩缺

C. 结构与异物

  1. 颗粒、脏污、异色

  2. 缩水、气泡、暗裂

D. 3D几何

  1. 平面度、轮廓度

  2. 摄像头台阶崩缺

四、方案价值

零漏检、超高精度、极速节拍,产能提升5倍

一键换型:3分钟完成颜色/纹理切换,0停机损失

数据闭环:缺陷图像实时上云,反向指导喷涂、抛光、热弯工艺,持续降本。

Handdle AI手机背板外观检测方案,以"零漏检+一键换型"重新定义3C高端外观质量标准,助力手机品牌打造"零缺陷"颜值竞争力。

相关推荐
吴佳浩9 小时前
LangChain 深入
人工智能·python·langchain
LplLpl1112 小时前
AI 算法竞赛通关指南:基于深度学习的图像分类模型优化实战
大数据·人工智能·机器学习
依米s12 小时前
各年度人工智能大会WAIC核心议题(持续更新)
人工智能·人工智能+·waic·人工智能大会+
python机器学习建模13 小时前
22篇经典金融风控论文复现(2025年11月更新)
人工智能·机器学习·论文·期刊·金融风控
Codebee13 小时前
深度解析AI编程技术:从原理到实践,手把手教你落地
人工智能·设计模式·开源
武汉唯众智创13 小时前
基于五级工的人工智能训练师教学解决方案
人工智能·ai·产教融合·人工智能训练师·五级工·ai训练师
执笔论英雄13 小时前
【RL】python协程
java·网络·人工智能·python·设计模式
你好~每一天14 小时前
未来3年,最值得拿下的5个AI证书!
数据结构·人工智能·算法·sqlite·hbase·散列表·模拟退火算法
老前端的功夫14 小时前
前端技术选型的理性之道:构建可量化的ROI评估模型
前端·javascript·人工智能·ubuntu·前端框架
Mxsoft61914 小时前
我发现区块链数据同步延迟,某次故障溯源卡顿,动态调整共识机制救场!
人工智能