酒店预订数据分析及预测可视化

可视化效果视频

项目概况

**👇👇👇👇👇👇👇👇**

点这里,查看所有项目

**👆👆👆👆👆👆👆👆**

数据类型

酒店预订数据数据

开发环境

centos7

软件版本

python3.8.18、hadoop3.2.0、hive3.1.2、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8、sqoop1.4.7

开发语言

python、Scala

开发流程

数据上传(hdfs)->数据分析(hive)->机器学习(spark)->数据存储(mysql)->后端(flask)->前端(html+js+css)

可视化图表











操作步骤

python安装包

shell 复制代码
pip3 install pandas==2.0.3 -i https://pypi.tuna.tsinghua.edu.cn/simple/
pip3 install flask==3.0.0 -i https://pypi.tuna.tsinghua.edu.cn/simple/
pip3 install flask-cors==4.0.1 -i https://pypi.tuna.tsinghua.edu.cn/simple/
pip3 install pymysql==1.1.0 -i https://pypi.tuna.tsinghua.edu.cn/simple/
pip3 install pyecharts==2.0.4 -i https://pypi.tuna.tsinghua.edu.cn/simple

启动MySQL

shell 复制代码
# 查看mysql是否启动 启动命令: systemctl start mysqld.service
systemctl status mysqld.service
# 进入mysql终端
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
mysql -uroot -p123456

启动Hadoop

shell 复制代码
# 离开安全模式: hdfs dfsadmin -safemode leave
# 启动hadoop
bash /export/software/hadoop-3.2.0/sbin/start-hadoop.sh

启动hive

shell 复制代码
# 在第一个窗口中,执行后等待10-20秒
/export/software/apache-hive-3.1.2-bin/bin/hive --service metastore

# 在第二个窗口中,执行后等待10-20秒
/export/software/apache-hive-3.1.2-bin/bin/hive --service hiveserver2

# 连接进入hive终端命令如下:
# /export/software/apache-hive-3.1.2-bin/bin/beeline -u jdbc:hive2://master:10000 -n root

准备目录

shell 复制代码
mkdir -p /data/jobs/project/
cd /data/jobs/project/

# 解压 "data" 目录下的 "原始数据.7z" 文件
# 上传 "data" 目录下的 "hotel_bookings.csv" 文件 到 "/data/jobs/project/" 目录
# 上传 "数据清洗" 目录下的 "data_clean.py" 文件 到 "/data/jobs/project/" 目录

python3 data_clean.py

# 验证结果
head -5 cleaned.csv
head -5 ml_data.csv

上传文件到hdfs

shell 复制代码
cd /data/jobs/project/

hdfs dfs -rm -r /data/*
hdfs dfs -mkdir -p /data/input/hive/
hdfs dfs -mkdir -p /data/input/ml_data/
hdfs dfs -put -f cleaned.csv /data/input/hive/
hdfs dfs -put -f ml_data.csv /data/input/ml_data/
hdfs dfs -ls /data/input/hive/
hdfs dfs -ls /data/input/ml_data/

hive数据分析

shell 复制代码
cd /data/jobs/project/

# 上传 "hive分析" 目录下的 "hive.sql" 文件 到 "/data/jobs/project/" 目录

# 连接进入hive终端命令如下:
# /export/software/apache-hive-3.1.2-bin/bin/beeline -u jdbc:hive2://master:10000 -n root

# 快速执行hive.sql
hive -v -f hive.sql

创建MySQL表

shell 复制代码
cd /data/jobs/project/

# 上传 "mysql" 目录下的 "mysql.sql" 文件 到 "/data/jobs/project/" 目录

# 请确认mysql服务已经启动了
# 快速执行.sql文件内的sql语句
mysql -u root -p < mysql.sql

数据导入MySQL

shell 复制代码
cd /data/jobs/project/

# 上传 "mysql" 目录下的 "sqoop.sh" 文件 到 "/data/jobs/project/" 目录

sed -i 's/\r//g' sqoop.sh
bash sqoop.sh

spark预测

shell 复制代码
cd /data/jobs/project/

# 对 "spark_ml" 目录下的项目 "spark-job" 进行打包
# 打包命令: mvn clean package -Dmaven.test.skip=true

# 上传 "spark-job/target/" 目录下的 "spark-job-jar-with-dependencies.jar" 文件 到 "/data/jobs/project/" 目录

spark-submit \
--master local[*] \
--class com.exam.SparkMLApp \
/data/jobs/project/spark-job-jar-with-dependencies.jar /data/input/ml_data/

启动可视化

shell 复制代码
mkdir -p /data/jobs/project/myapp/
cd /data/jobs/project/myapp/

# 上传 "可视化" 目录下的 "所有" 文件和文件夹 到 "/data/jobs/project/" 目录

# 先执行 data_extractor.py 创建用户表
python3 data_extractor.py

# windows本地运行: python app.py
python3 app.py pro
# 用户名: admin
# 密码: admin
相关推荐
沃达德软件4 小时前
智慧警务图像融合大数据
大数据·图像处理·人工智能·目标检测·计算机视觉·目标跟踪
代码改善世界6 小时前
【前瞻创想】Kurator:驾驭分布式云原生世界的“统一舰队”
分布式·云原生
行走正道6 小时前
【前瞻创想】标准之争:论Kurator在分布式云原生API标准化中的潜在角色
分布式·api·kurator·标准化·策略驱动
笨蛋少年派7 小时前
跨境电商大数据分析系统案例:③建模、分析与暂时收尾
hive·数据挖掘·数据分析
陈奕昆7 小时前
n8n实战营Day3:电商订单全流程自动化·需求分析与流程拆解
大数据·开发语言·人工智能·自动化·需求分析·n8n
代码改善世界7 小时前
【探索实战】从零到一:Kurator 构建分布式云原生平台的探索与实践
分布式·云原生
Cisyam^7 小时前
openGauss + LangChain Agent实战:从自然语言到SQL的智能数据分析助手
sql·数据分析·langchain
semantist@语校7 小时前
第五十一篇|构建日本语言学校数据模型:埼玉国际学院的城市结构与行为变量分析
java·大数据·数据库·人工智能·百度·ai·github
赵渝强老师7 小时前
【赵渝强老师】阿里云大数据集成开发平台DataWorks
大数据·阿里云·云计算
9***Y487 小时前
后端在分布式中的Apache Kafka
分布式·kafka