探究pytorch中多个卷积层和全连接层的输出方法

1 问题

问题1: 多个卷积层连续输出方法

问题2: 多个卷积层加上多个全连接层的输出方法。

2 方法

问题1: 多个卷积层连续输出方法

创建多个卷积层并连接它们时,通常会在每个卷积层后使用激活函数,这有助于引入非线性性,从而使网络能够学习更复杂的特征。激活函数有Sigmoid 函数、ReLU 函数、Tanh 函数等等,这里用ReLU作演示。(不同的激活函数适用于不同的情况,通常需要根据具体的任务和数据集来选择。ReLU 及其变体通常是首选,因为它们在实践中表现得很好。)

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| import torch from torch import nn conv = nn.Conv2d( in_channels=3, out_channels=16, kernel_size=3, stride=2, ) conv1 = nn.Conv2d( in_channels= 16, # 输入通道数 out_channels= 64, # 当前卷积层使用的卷积核的数量 kernel_size= 3, # 卷积核的大小 3x3 stride=1, # 步长, 规定了卷积核每次扫描移动的步数,默认值为1 # padding默认值为0 padding=1,# 使用填充获得与输入特征图相同的尺寸, 3x3使用padding=1,5x5使用padding=2 ) # 激活函数 activation = nn.ReLU() if name == 'main': # 构造输入层数据 x = torch.rand(size=(3, 5, 5)) x = conv(x) x = activation(x) x = conv1(x) x = activation(x) print(x.shape) |

问题2: 多个卷积层加上多个全连接层的输出方法

卷积层到全连接层之间连接时需要flatten。 flatten 通常指的是将一个多维的张量(tensor)转换成一个一维的张量,以便进行全连接层等操作。可以使用 view 方法来实现这一操作。

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| import torch from torch import nn conv = nn.Conv2d( in_channels=3, out_channels=16, kernel_size=3, stride=2, ) conv1 = nn.Conv2d( in_channels= 16, # 输入通道数 out_channels= 64, # 当前卷积层使用的卷积核的数量 kernel_size= 3, # 卷积核的大小 3x3 stride=1, # 步长, 规定了卷积核每次扫描移动的步数,默认值为1 # padding默认值为0 padding=1, ) # 全连接层 fc1 = nn.Linear(in_features=4,out_features=256) fc2 = nn.Linear(in_features=256,out_features=10) # 激活函数 activation = nn.ReLU() if name == 'main': # 构造输入层数据 x = torch.rand(size=(3, 5, 5)) x = conv(x) x = activation(x) x = conv1(x) x = activation(x) # 展平 x = x.view(x.size(0), -1) # 全连接层和激活函数 x = fc1(x) x = activation(x) x = fc2(x) print(x.shape) |

3 结语

在深度学习中,多个卷积层通过使用激活函数引入非线性,以学习更复杂的特征。通常,ReLU是常用的激活函数。在卷积层与全连接层之间,需要进行flatten操作,将多维张量转换成一维张量,以便进行全连接层的操作。这些是构建深度神经网络的关键步骤。

相关推荐
草莓熊Lotso5 小时前
Linux 文件描述符与重定向实战:从原理到 minishell 实现
android·linux·运维·服务器·数据库·c++·人工智能
Coder_Boy_6 小时前
技术发展的核心规律是「加法打底,减法优化,重构平衡」
人工智能·spring boot·spring·重构
会飞的老朱8 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º9 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee11 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º12 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys12 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_567812 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子12 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能13 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算