探究pytorch中多个卷积层和全连接层的输出方法

1 问题

问题1: 多个卷积层连续输出方法

问题2: 多个卷积层加上多个全连接层的输出方法。

2 方法

问题1: 多个卷积层连续输出方法

创建多个卷积层并连接它们时,通常会在每个卷积层后使用激活函数,这有助于引入非线性性,从而使网络能够学习更复杂的特征。激活函数有Sigmoid 函数、ReLU 函数、Tanh 函数等等,这里用ReLU作演示。(不同的激活函数适用于不同的情况,通常需要根据具体的任务和数据集来选择。ReLU 及其变体通常是首选,因为它们在实践中表现得很好。)

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| import torch from torch import nn conv = nn.Conv2d( in_channels=3, out_channels=16, kernel_size=3, stride=2, ) conv1 = nn.Conv2d( in_channels= 16, # 输入通道数 out_channels= 64, # 当前卷积层使用的卷积核的数量 kernel_size= 3, # 卷积核的大小 3x3 stride=1, # 步长, 规定了卷积核每次扫描移动的步数,默认值为1 # padding默认值为0 padding=1,# 使用填充获得与输入特征图相同的尺寸, 3x3使用padding=1,5x5使用padding=2 ) # 激活函数 activation = nn.ReLU() if name == 'main': # 构造输入层数据 x = torch.rand(size=(3, 5, 5)) x = conv(x) x = activation(x) x = conv1(x) x = activation(x) print(x.shape) |

问题2: 多个卷积层加上多个全连接层的输出方法

卷积层到全连接层之间连接时需要flatten。 flatten 通常指的是将一个多维的张量(tensor)转换成一个一维的张量,以便进行全连接层等操作。可以使用 view 方法来实现这一操作。

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| import torch from torch import nn conv = nn.Conv2d( in_channels=3, out_channels=16, kernel_size=3, stride=2, ) conv1 = nn.Conv2d( in_channels= 16, # 输入通道数 out_channels= 64, # 当前卷积层使用的卷积核的数量 kernel_size= 3, # 卷积核的大小 3x3 stride=1, # 步长, 规定了卷积核每次扫描移动的步数,默认值为1 # padding默认值为0 padding=1, ) # 全连接层 fc1 = nn.Linear(in_features=4,out_features=256) fc2 = nn.Linear(in_features=256,out_features=10) # 激活函数 activation = nn.ReLU() if name == 'main': # 构造输入层数据 x = torch.rand(size=(3, 5, 5)) x = conv(x) x = activation(x) x = conv1(x) x = activation(x) # 展平 x = x.view(x.size(0), -1) # 全连接层和激活函数 x = fc1(x) x = activation(x) x = fc2(x) print(x.shape) |

3 结语

在深度学习中,多个卷积层通过使用激活函数引入非线性,以学习更复杂的特征。通常,ReLU是常用的激活函数。在卷积层与全连接层之间,需要进行flatten操作,将多维张量转换成一维张量,以便进行全连接层的操作。这些是构建深度神经网络的关键步骤。

相关推荐
空中楼阁,梦幻泡影20 小时前
主流4 大模型(GPT、LLaMA、DeepSeek、QWE)的训练与推理算力估算实例详细数据
人工智能·gpt·llama
Dev7z20 小时前
基于改进YOLOv5n与OpenVINO加速的课堂手机检测系统设计与实现
人工智能·yolo·openvino·手机检测·课堂手机检测
Elastic 中国社区官方博客20 小时前
Elastic 9.3:与数据对话、构建自定义 AI agents、实现全自动化
大数据·人工智能·elasticsearch·搜索引擎·ai·自动化·全文检索
启友玩AI21 小时前
方言守护者:基于启英泰伦CI-F162GS02J芯片的“能听懂乡音”的智能夜灯DIY全攻略
c语言·人工智能·嵌入式硬件·ai·语音识别·pcb工艺
档案宝档案管理21 小时前
企业档案管理系统:从“资料存放”到“数据资产”的升级
大数据·人工智能·档案·档案管理
wasp52021 小时前
Banana Slides 深度解析:AI Core 架构设计与 Prompt 工程实践
人工智能·prompt·bash
跨境卫士情报站21 小时前
用“渠道矩阵+内容节奏”把流量做成可控资产
大数据·人工智能·矩阵·产品运营·跨境电商·亚马逊
XX風21 小时前
4.1 spectral clusterig
人工智能·机器学习·支持向量机
连线Insight21 小时前
从“模型竞赛”到“数据为王”:WPS 365如何帮企业挖掘数据金矿?
人工智能·wps
云道轩21 小时前
在Rocky Linux 9.5上在线使用Docker安装LangFlow 1.7.3
人工智能·智能体·langflow