计算机视觉11-相机模型与多视几何

2d图像可以看作3d的一个子空间

三维视觉:关注相机的位置姿态,三维场景的重构

MVS = Multi-View Stereo,多视图立体重建

  • 输入:多张已知相机位姿的图片(这些位姿通常由 SfM 算出来)。

  • 目标:在每一个像素上估计可靠的深度,得到稠密点云/网格模型。

可以这么理解:

  • SfM :先用特征点匹配 +几何约束,只重建出稀疏的三维点(角点、特征点)和相机外参。

  • MVS :在 SfM 结果的基础上,利用多张图像之间的视差,把"空白区域"也补上,变成稠密三维结构(深度图、稠密点云、三角网格)

PnP = Perspective-n-Point 问题

  • 已知:

    • 一些三维点的坐标(世界坐标系里,通常是地图中的点);

    • 它们在当前图像上的2D 像素位置

    • 相机内参(焦距、主点等)。

  • 求:

    • 当前相机相对于世界坐标系的位姿(R、t)------也就是"在什么位置、朝哪儿看"。

常见变体有 P3P、EPnP 等,通常会配合 RANSAC 使用来去除误匹配点。

光圈过小可能产生衍射现象

D'为相距,D为物距

公式非常重要!!!

超出景深范围,有弥散圆,太远太近都不行

弥散圆:指的是物点成像时,由于像差,其成像光束不能会聚于一点,在像平面上形成一个扩散的圆形投影。弥散圆在焦点前后,光线开始聚集和扩散,点的影象变成模糊的,形成一个扩大的圆。

景深是个范围,受到光圈等影响

光圈是一个用来控制光线通进入镜头的装置,它通常是在镜头内,对于已经制造好的镜头,我们不可以随意的改变镜头的镜头,但是可以通过在镜头内部加入多边形或者圆形,并且面积可变的孔径光栅来达到控制镜头通光量。

光圈越大景深越浅,光圈越小景深越深

欧式空间到摄影空间的转化,从3d到2d,丢失了一定的信息

分别建立两个坐标系,图中有一定的约束关系

问题

  • 在一条直线上只有唯一一个无穷远点
  • 在一个平面上,所有的无穷远点组成一条直线,称为该平面的无穷远直线
  • 三维空间中的所有无穷远点组成的一个平面,称为这个空间的无穷远平面

再加入齐次坐标(统一维度)

相机模型(重要!!!)

注意:f的单位改为像素

两个坐标系变化只有旋转、平移

最后得到投影与真实坐标之间的关系

K为焦距的部分

R由于相机的姿态造成的旋转与平移(相对于世界坐标系而言)

公式非常重要!!!

对于矩阵的维度

相关推荐
咚咚王者20 小时前
人工智能之数学基础 信息论:第二章 核心度量
人工智能
Trent198520 小时前
影楼精修-眼镜祛反光算法详解
图像处理·人工智能·算法·计算机视觉·aigc
吾在学习路20 小时前
【CVPR 2018最佳论文】Squeeze-and-Excitation Networks
人工智能·深度学习·神经网络·机器学习
小黄人软件20 小时前
豆包AI手机是未来所有带屏设备的方向,包括POS机。豆包AI手机需要很强的本地算力吗?不需要。
人工智能·智能手机
Salt_072820 小时前
DAY 47 Tensorboard的使用介绍
人工智能·python·深度学习·机器学习
木卫二号Coding20 小时前
第七十篇-ComfyUI+V100-32G+运行SD3.5-文生图
人工智能
Salt_072820 小时前
DAY 40 早停策略和模型权重的保存
人工智能·python·算法·机器学习
码农小白猿20 小时前
IACheck优化电梯定期检验报告:自动化术语审核提升合规性与效率
大数据·运维·人工智能·ai·自动化·iacheck
点云SLAM21 小时前
Absence 英文单词学习
人工智能·英文单词学习·雅思备考·absence·缺席 / 不在场·缺乏 / 缺失