【交通标志识别系统】Python+TensorFlow+Django+人工智能+深度学习+卷积神经网络算法

一、介绍

交通标志识别系统,基于TensorFlow搭建Resnet50卷积神经网络算法,通过对58种常见的交通标志图片数据集进行训练,最后得到一个识别精度较高的模型,然后搭建Web可视化操作平台。

技术栈

  • 项目前端使用Html、CSS、BootStrap搭建界面。
  • 后端基于Django处理逻辑请求
  • 基于Ajax实现前后端数据通信

选题背景与意义: 在智能交通系统蓬勃发展的当下,交通标志的精准识别对于保障行车安全、提升交通管理效率意义重大。然而,传统识别方法在面对复杂多变的交通环境时,往往存在识别精度不足、效率低下等问题。为此,我们开展交通标志识别系统项目,采用前沿技术,基于TensorFlow搭建Resnet50卷积神经网络算法,利用58种常见交通标志图片数据集训练,以获取高精度识别模型。同时,为方便用户操作,我们还运用Html、CSS等技术搭建Web可视化平台,实现便捷交互。

二、系统效果图片展示

三、演示视频 and 完整代码 and 安装

地址:ziwupy.cn/p/qBWZim

四、卷积神经网络算法介绍

卷积神经网络(CNN)是一种专门为处理具有网格结构数据(如图像)而设计的深度学习算法。它通过卷积层自动提取图像的局部特征,利用池化层降低数据维度、减少计算量并增强特征的鲁棒性,最后通过全连接层对提取的特征进行分类或回归。CNN的独特之处在于其局部连接和权重共享机制,极大减少了参数量,提高了训练效率,尤其擅长图像识别、目标检测等计算机视觉任务。

python 复制代码
import tensorflow as tf
from tensorflow.keras import layers, models

# 构建简单CNN模型
model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

上述代码用TensorFlow构建了一个简单的CNN模型,包含两个卷积层和池化层,用于提取图像特征,后接全连接层进行分类。该模型适用于手写数字识别等简单图像分类任务,通过调整网络结构和参数,可拓展至更复杂的图像识别场景。

相关推荐
WangYaolove13143 小时前
基于深度学习的中文情感分析系统(源码+文档)
python·深度学习·django·毕业设计·源码
软件算法开发3 小时前
基于改进麻雀优化的LSTM深度学习网络模型(ASFSSA-LSTM)的一维时间序列预测算法matlab仿真
深度学习·matlab·lstm·一维时间序列预测·改进麻雀优化·asfssa-lstm
狮子座明仔4 小时前
Engram:DeepSeek提出条件记忆模块,“查算分离“架构开启LLM稀疏性新维度
人工智能·深度学习·语言模型·自然语言处理·架构·记忆
2301_800256115 小时前
【人工智能引论期末复习】 第6章 深度学习4 - RNN
人工智能·rnn·深度学习
徐先生 @_@|||5 小时前
Palantir Foundry 五层架构模型详解
开发语言·python·深度学习·算法·机器学习·架构
翱翔的苍鹰6 小时前
神经网络中损失函数(Loss Function)介绍
人工智能·深度学习·神经网络
元智启7 小时前
企业AI应用面临“敏捷响应”难题:快速变化的业务与相对滞后的智能如何同步?
人工智能·深度学习·机器学习
Hcoco_me8 小时前
大模型面试题63:介绍一下RLHF
人工智能·深度学习·机器学习·chatgpt·机器人
向量引擎小橙8 小时前
“2026数据枯竭”警报拉响:合成数据如何成为驱动AI进化的“新石油”?
大数据·人工智能·深度学习·集成学习
努力犯错8 小时前
Qwen Image Layered:革命性的AI图像生成与图层分解技术
人工智能·深度学习·计算机视觉