【狂飙全模态】狂飙AGI-智能图文理解助手

狂飙AGI-智能图文理解助手

      • 一、项目展示
      • 二、环境准备
        • [1 智谱API Key获取](#1 智谱API Key获取)
          • [1.1 登录官网](#1.1 登录官网)
          • [1.2 添加新的API Key](#1.2 添加新的API Key)
          • [1.3 点击复制API Key(备用)](#1.3 点击复制API Key(备用))
        • [2 虚拟环境配置](#2 虚拟环境配置)
          • [2.1 创建虚拟环境](#2.1 创建虚拟环境)
          • [2.2 安装依赖包](#2.2 安装依赖包)
      • 三、代码实现
          • [3.1 导入依赖包](#3.1 导入依赖包)
          • [3.2 设置API Key](#3.2 设置API Key)
          • [3.3 定义图像编码函数(base64)](#3.3 定义图像编码函数(base64))
          • [3.4 定义图文理解函数](#3.4 定义图文理解函数)
          • [3.5 Gradio界面构建](#3.5 Gradio界面构建)
          • [3.6 项目完整代码](#3.6 项目完整代码)
      • 四、效果展示

一、项目展示

二、环境准备

1 智谱API Key获取
1.1 登录官网

官网网址https://bigmodel.cn/

1.2 添加新的API Key
1.3 点击复制API Key(备用)
2 虚拟环境配置
2.1 创建虚拟环境
shell 复制代码
conda create -n KBAGI python=3.10
2.2 安装依赖包
bash 复制代码
pip install io base64 openai gradio pillow

三、代码实现

3.1 导入依赖包
python 复制代码
import io
import base64
import gradio as gr
from openai import OpenAI
from PIL import Image
3.2 设置API Key
python 复制代码
Zhipu_API_KEY="XXXXXXXXXX【替换为1.3复制的API Key】XXXXXXXXXXXXXX"
Zhipu_base_url="https://open.bigmodel.cn/api/paas/v4/"

# 初始化客户端
client = OpenAI(api_key=Zhipu_API_KEY, base_url=Zhipu_base_url)
3.3 定义图像编码函数(base64)
python 复制代码
def encode_image_to_base64(image):
    """将上传的图像编码为base64字符串"""
    if image is None:
        return None

    # 打开图像并转换为RGB模式(如果需要)
    img = Image.open(image)
    if img.mode != 'RGB':
        img = img.convert('RGB')

    # 将图像保存到内存中的字节流
    buffered = io.BytesIO()
    img.save(buffered, format="JPEG")

    # 编码为base64
    img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
    return img_str
3.4 定义图文理解函数
python 复制代码
def image_understanding(image, prompt):
    """使用GLM-4V模型进行图像理解"""
    if image is None:
        return "请上传一张图片"

    if not prompt:
        prompt = "请描述这张图片的内容"

    # 将图像编码为base64
    image_base64 = encode_image_to_base64(image)

    try:
        # 调用GLM-4V模型进行图像理解
        response = client.chat.completions.create(
            model="glm-4v",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "text",
                            "text": prompt
                        },
                        {
                            "type": "image_url",
                            "image_url": {
                                "url": f"data:image/jpeg;base64,{image_base64}"
                            }
                        }
                    ]
                }
            ],
            temperature=0.7
        )

        return response.choices[0].message.content
    except Exception as e:
        return f"处理图像时出错: {str(e)}"
3.5 Gradio界面构建
python 复制代码
# 创建Gradio界面
with gr.Blocks(title="狂飙AGI-智能图文理解助手") as demo:
    gr.Markdown("# 🌟狂飙AGI-智能图文理解助手")
    gr.Markdown("基于GLM-4V模型的智能图像理解工具,可分析图片内容并回答相关问题")

    with gr.Row():
        with gr.Column():
            image_input = gr.Image(type="filepath", label="上传图片")
            prompt_input = gr.Textbox(
                label="输入问题",
                placeholder="例如:请描述这张图片的内容,图片中有什么?",
                value="请描述这张图片的内容"
            )
            submit_btn = gr.Button("开始分析", variant="primary")

        with gr.Column():
            result_output = gr.Textbox(label="分析结果", interactive=False, lines=10)

    # 示例图片
    gr.Examples(
        examples=[["Qwen3.jpg", "请描述这张图片的内容"]],
        inputs=[image_input, prompt_input],
        outputs=result_output,
        fn=image_understanding,
        cache_examples=True
    )

    # 绑定事件
    submit_btn.click(
        fn=image_understanding,
        inputs=[image_input, prompt_input],
        outputs=result_output
    )

    # 支持回车提交
    prompt_input.submit(
        fn=image_understanding,
        inputs=[image_input, prompt_input],
        outputs=result_output
    )

if __name__ == "__main__":
    demo.launch()
3.6 项目完整代码
python 复制代码
import io
import base64
import gradio as gr
from openai import OpenAI
from PIL import Image

Zhipu_API_KEY = "XXXXXXXXXX【替换为1.3复制的API Key】XXXXXXXXXXXXXX"
Zhipu_base_url = "https://open.bigmodel.cn/api/paas/v4/"

# 初始化客户端
client = OpenAI(api_key=Zhipu_API_KEY, base_url=Zhipu_base_url)


def encode_image_to_base64(image):
    """将上传的图像编码为base64字符串"""
    if image is None:
        return None

    # 打开图像并转换为RGB模式(如果需要)
    img = Image.open(image)
    if img.mode != 'RGB':
        img = img.convert('RGB')

    # 将图像保存到内存中的字节流
    buffered = io.BytesIO()
    img.save(buffered, format="JPEG")

    # 编码为base64
    img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
    return img_str


def image_understanding(image, prompt):
    """使用GLM-4V模型进行图像理解"""
    if image is None:
        return "请上传一张图片"

    if not prompt:
        prompt = "请描述这张图片的内容"

    # 将图像编码为base64
    image_base64 = encode_image_to_base64(image)

    try:
        # 调用GLM-4V模型进行图像理解
        response = client.chat.completions.create(
            model="glm-4v",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "text",
                            "text": prompt
                        },
                        {
                            "type": "image_url",
                            "image_url": {
                                "url": f"data:image/jpeg;base64,{image_base64}"
                            }
                        }
                    ]
                }
            ],
            temperature=0.7
        )

        return response.choices[0].message.content
    except Exception as e:
        return f"处理图像时出错: {str(e)}"


# 创建Gradio界面
with gr.Blocks(title="狂飙AGI-智能图文理解助手") as demo:
    gr.Markdown("# 🌟狂飙AGI-智能图文理解助手")
    gr.Markdown("基于GLM-4V模型的智能图像理解工具,可分析图片内容并回答相关问题")

    with gr.Row():
        with gr.Column():
            image_input = gr.Image(type="filepath", label="上传图片")
            prompt_input = gr.Textbox(
                label="输入问题",
                placeholder="例如:请描述这张图片的内容,图片中有什么?",
                value="请描述这张图片的内容"
            )
            submit_btn = gr.Button("开始分析", variant="primary")

        with gr.Column():
            result_output = gr.Textbox(label="分析结果", interactive=False, lines=10)

    # 示例图片
    gr.Examples(
        examples=[["Qwen3.jpg", "请描述这张图片的内容"]],
        inputs=[image_input, prompt_input],
        outputs=result_output,
        fn=image_understanding,
        cache_examples=True
    )

    # 绑定事件
    submit_btn.click(
        fn=image_understanding,
        inputs=[image_input, prompt_input],
        outputs=result_output
    )

    # 支持回车提交
    prompt_input.submit(
        fn=image_understanding,
        inputs=[image_input, prompt_input],
        outputs=result_output
    )

if __name__ == "__main__":
    demo.launch()

四、效果展示

相关推荐
AI架构师易筋31 分钟前
机器学习中的熵、信息量、交叉熵和 KL 散度:从入门到严谨
人工智能·机器学习
serve the people31 分钟前
TensorFlow 模型的 “完整保存与跨环境共享” 方案
人工智能·tensorflow·neo4j
Mr数据杨33 分钟前
企划部绩效考核关键指标与评估体系设计
人工智能·aigc
xcLeigh33 分钟前
openEuler 在 AI 与云原生场景下的性能评测与实践
人工智能·云原生·openeuler
know__ledge34 分钟前
吴恩达机器学习2022 -- Course1 -- Week3(分类问题)
人工智能·算法·目标检测·机器学习·分类
爱笑的源码基地35 分钟前
智慧工地云平台源码,采用Java+SpringCloud+UniApp+MySql技术,支持多端展示,具备集团级多级权限管理。
人工智能·后端·spring·spring cloud·源码·智慧工地·工地智能管理
毕设十刻35 分钟前
基于Vue的旅游网站yzwa8(程序 + 源码 + 数据库 + 调试部署 + 开发环境配置),配套论文文档字数达万字以上,文末可获取,系统界面展示置于文末
数据库·vue.js·旅游
Aevget35 分钟前
DevExtreme JS & ASP.NET Core v25.2新功能预览 - 提升AI扩展功能
javascript·人工智能·ui·asp.net·界面控件·devextreme
乱世军军36 分钟前
AI 三大学习类型(监督/无监督/强化)的分类图
人工智能·学习