【聚类算法】高维数据的聚类

以八维数据为例

设原本聚类数是4,目标聚类数也是4

代码:

matlab 复制代码
%% 八维数据聚类完整示例(自带数据 + 输出中心点)
% function Main_Cluster()
clc
clear
close all
%K是聚类数
%% 1. 生成 100 个 8 维样本(4 个高斯簇混合)
rng(0)                       % 保证每次结果可复现
K_true = 4;                  % 真实簇数
mu = [ 1*ones(1,8); ...
      -1*ones(1,8); ...
       3*ones(1,8); ...
      -3*ones(1,8)];         % 4×8 中心
sigma = 0.6;                 % 各维标准差
nPer = 25;                   % 每簇样本数
X = [];
for k = 1:K_true
    X = [X; mvnrnd(mu(k,:), sigma^2*eye(8), nPer)];
end
% 打乱顺序
X = X(randperm(size(X,1)), :);

%% 2. Elbow 方法自动选 K(可选)
maxK = 10;
sse  = zeros(maxK,1);
for k = 1:maxK
    [~,~,sumd] = kmeans(X,k,'Replicates',10,'Start','plus');
    sse(k) = sum(sumd);
end
figure;
plot(1:maxK, sse, '-o');
xlabel('K'); ylabel('SSE');
title('Elbow 方法选 K');
grid on;

%% 3. 用最佳 K(这里取 4)正式聚类
K =4;
[idx, C] = kmeans(X, K, 'Replicates', 20, 'Start', 'plus');

%% 4. 输出中心点
fprintf('\n==== 聚类完成 ====\n');
fprintf('K = %d 个簇的 8 维中心坐标如下:\n', K);
disp(C);                     % 4×8 矩阵

%% 5. 保存中心点到文件
writematrix(C, 'centers8D.txt', 'Delimiter', 'tab');
fprintf('中心点已写入 centers8D.txt\n');

%% 6. 2D 投影可视化(仅看前两维)
figure;
gscatter(X(:,1), X(:,2), idx);
hold on;
plot(C(:,1), C(:,2), 'kx', 'MarkerSize', 12, 'LineWidth', 2);
title('前二维投影及中心点');
xlabel('dim1'); ylabel('dim2');
grid on;

效果:

函数版代码

matlab 复制代码
%% 八维数据聚类完整示例(自带数据 + 输出中心点)
% function Main_Cluster()
clc
clear
close all
%K是聚类数
%% 1. 生成 100 个 8 维样本(4 个高斯簇混合)
rng(0)                       % 保证每次结果可复现
K_true = 4;                  % 真实簇数
mu = [ 1*ones(1,8); ...
      -1*ones(1,8); ...
       3*ones(1,8); ...
      -3*ones(1,8)];         % 4×8 中心
sigma = 0.6;                 % 各维标准差
nPer = 25;                   % 每簇样本数
X = [];
for k = 1:K_true
    X = [X; mvnrnd(mu(k,:), sigma^2*eye(8), nPer)];
end
% 打乱顺序
X = X(randperm(size(X,1)), :);
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 2.k均值聚类
maxK = 10;
K =5;
[idx, C]=K_means_Cluster(X,K,maxK);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%函数

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 3. 输出中心点
fprintf('\n==== 聚类完成 ====\n');
fprintf('K = %d 个簇的 8 维中心坐标如下:\n', K);
disp(C);                     % 4×8 矩阵

%% 4. 保存中心点到文件
writematrix(C, 'centers8D.txt', 'Delimiter', 'tab');
fprintf('中心点已写入 centers8D.txt\n');

%% 5. 2D 投影可视化(仅看前两维)
figure;
gscatter(X(:,1), X(:,2), idx);
hold on;
plot(C(:,1), C(:,2), 'kx', 'MarkerSize', 12, 'LineWidth', 2);
title('前二维投影及中心点');
xlabel('dim1'); ylabel('dim2');
grid on;

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Elbow 方法自动选 K(可选)
function [idx, C]=K_means_Cluster(X,K,maxK)
% maxK = 10;
sse  = zeros(maxK,1);
for k = 1:maxK
    [~,~,sumd] = kmeans(X,k,'Replicates',10,'Start','plus');
    sse(k) = sum(sumd);
end
% figure;
% plot(1:maxK, sse, '-o');
% xlabel('K'); ylabel('SSE');
% title('Elbow 方法选 K');
% grid on;

%% 3. 用最佳 K(这里取 4)正式聚类
% K =4;
[idx, C] = kmeans(X, K, 'Replicates', 20, 'Start', 'plus');
end
相关推荐
努力学算法的蒟蒻30 分钟前
day79(2.7)——leetcode面试经典150
算法·leetcode·职场和发展
2401_8414956434 分钟前
【LeetCode刷题】二叉树的层序遍历
数据结构·python·算法·leetcode·二叉树··队列
AC赳赳老秦36 分钟前
2026国产算力新周期:DeepSeek实战适配英伟达H200,引领大模型训练效率跃升
大数据·前端·人工智能·算法·tidb·memcache·deepseek
2401_841495641 小时前
【LeetCode刷题】二叉树的直径
数据结构·python·算法·leetcode·二叉树··递归
budingxiaomoli1 小时前
优选算法-字符串
算法
qq7422349841 小时前
APS系统与OR-Tools完全指南:智能排产与优化算法实战解析
人工智能·算法·工业·aps·排程
A尘埃2 小时前
超市购物篮关联分析与货架优化(Apriori算法)
算法
.小墨迹2 小时前
apollo学习之借道超车的速度规划
linux·c++·学习·算法·ubuntu
不穿格子的程序员2 小时前
从零开始刷算法——贪心篇1:跳跃游戏1 + 跳跃游戏2
算法·游戏·贪心
大江东去浪淘尽千古风流人物2 小时前
【SLAM新范式】几何主导=》几何+学习+语义+高效表示的融合
深度学习·算法·slam