代码随想录 115.不同的子序列

思路:本题也是编辑距离类型问题。本题相当于只有删除操作,不考虑替换增加之类的。

动规五部曲:

1.确定dp数组(dp table)及其下标的含义:dp[i][j]表示以i - 1为结尾的s子序列中,出现以j - 1为结尾的t的个数为dp[i][j]。

2.确定递推公式:分为两种情况。

(1)s[i - 1]与t[j - 1]相等:dp[i][j]可以由两部分组成。

------一部分是用s[i - 1]来匹配,个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要dp[i - 1][j - 1]。

------另一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。

所以此时递推公式为dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]。

(2)s[i - 1]与t[j - 1]不相等:dp[i][j]只有一部分组成,那就是不用s[i - 1]来匹配(模拟在s中删除这个元素),即:dp[i - 1][j]。此时递推公式为:dp[i][j] = dp[i - 1][j]。

为什么只考虑不用s[i - 1]来匹配的情况,而没有考虑不用t[j - 1]来匹配的情况?

因为是要求s中有多少个t,而不是求t中有多少个s,所以只考虑s中删除元素的情况。

3.dp数组如何初始化:

(1)从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]和dp[i][j] = dp[i - 1][j]可以看出,dp[i][j]是从上方和左上方推导而来,如下图所示。那么dp[i][0]和dp[0][j]一定是要初始化的。

(2)初始化之前,先回顾dp[i][j]的定义。

------dp[i][0]表示:以i - 1为结尾的s可以随便删除元素,出现空字符串的个数。因此dp[i][0] = 1。

------dp[0][j]表示:空字符串s可以随便删除元素,出现以j - 1为结尾的字符串t的个数。因此dp[0][j] = 0,因为s无法变为t。

------dp[0][0]:dp[0][0]应该为1,因为空字符串s可以删除0个元素变成空字符串t。

4.确定遍历顺序:从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]和dp[i][j] = dp[i - 1][j]可以看出来,dp[i][j]是根据左上方和正上方推导出来的。所以遍历顺序为从上到下,从左到右,以保证dp[i][j]可以根据之前计算出的数值进行计算。代码如下所示。

cpp 复制代码
for (int i = 1; i <= s.size(); i++) {
    for (int j = 1; j <= t.size(); j++) {
        if (s[i - 1] == t[j - 1]) {
            dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
        } else {
            dp[i][j] = dp[i - 1][j];
        }
    }
}

5.举例推导dp数组:以s:"baegg",t:"bag"为例,dp数组的状态如下所示。

附代码:

java 复制代码
class Solution {
    public int numDistinct(String s, String t) {
        int len1 = s.length();
        int len2 = t.length();
        int[][] dp = new int[len1 + 1][len2 + 1];
        for(int i = 0;i < len1 + 1;i++){
            dp[i][0] = 1;
        }
        for(int i = 1;i < len1 + 1;i++){
            for(int j = 1;j < len2 + 1;j++){
                if(s.charAt(i - 1) == t.charAt(j - 1)){
                    //既可以使用主串s的最后一个字符s[i - 1]去匹配t的最后一个字符t[i - 1]
                    //也可以不使用主串s的最后一个字符s[i - 1]去匹配t的最后一个字符t[j - 1]
                    //这两种选择是互斥的,且覆盖了所有可能
                    dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
                }else{
                    //主串s的最后一个字符s[i - 1]不能用来匹配t的最后一个字符t[i - 1]
                    //因此必须用s[0..i - 2]去匹配t[0..j - 1]
                    dp[i][j] = dp[i - 1][j];
                }
            }
        }
        return dp[len1][len2];
    }
}
相关推荐
CoderCodingNo18 分钟前
【GESP】C++五级练习题 luogu-P1865 A % B Problem
开发语言·c++·算法
大闲在人28 分钟前
7. 供应链与制造过程术语:“周期时间”
算法·供应链管理·智能制造·工业工程
小熳芋31 分钟前
443. 压缩字符串-python-双指针
算法
Charlie_lll41 分钟前
力扣解题-移动零
后端·算法·leetcode
chaser&upper42 分钟前
矩阵革命:在 AtomGit 解码 CANN ops-nn 如何构建 AIGC 的“线性基石”
程序人生·算法
weixin_499771551 小时前
C++中的组合模式
开发语言·c++·算法
iAkuya1 小时前
(leetcode)力扣100 62N皇后问题 (普通回溯(使用set存储),位运算回溯)
算法·leetcode·职场和发展
近津薪荼1 小时前
dfs专题5——(二叉搜索树中第 K 小的元素)
c++·学习·算法·深度优先
xiaoye-duck1 小时前
吃透 C++ STL list:从基础使用到特性对比,解锁链表容器高效用法
c++·算法·stl
松☆1 小时前
CANN与大模型推理:在边缘端高效运行7B参数语言模型的实践指南
人工智能·算法·语言模型