Day32:动态规划part5(完全背包、518.零钱兑换 II、377.组合总和 Ⅳ、70.爬楼梯 (进阶))

完全背包

1. 确定dp数组以及下标的含义

dp[i][j] 表示从下标为[0-i]的物品,每个物品可以取无限次,放进容量为j的背包,价值总和最大是多少

2. 确定递推公式

重量 价值
物品0 1 15
物品1 3 20
物品2 4 30

对于递推公式,首先我们要明确有哪些方向可以推导出 dp[i][j]。

拿dp[1][4]的状态来举例,求取 dp[1][4] 有两种情况:

  1. 放物品1
  2. 还是不放物品1

如果不放物品1, 那么背包的价值应该是 dp[0][4] 即 容量为4的背包,只放物品0的情况。

推导方向如图:

如果放物品1那么背包要先留出物品1的容量,目前容量是4,物品1 的容量(就是物品1的重量)为3,此时背包剩下容量为1。

容量为1,只考虑放物品0 和物品1 的最大价值是 dp[1][1], 注意 这里和01背包有所不同

在01背包中,背包先空留出物品1的容量,此时容量为1,只考虑放物品0的最大价值是 dp[0][1],因为01背包每个物品只有一个,既然空出物品1,那背包中也不会再有物品1

而在完全背包中,物品是可以放无限个,所以 即使空出物品1空间重量,那背包中也可能还有物品1,所以此时我们依然考虑放 物品0 和 物品1 的最大价值即: dp[1][1], 而不是 dp[0][1]

所以 放物品1 的情况 = dp[1][1] + 物品1 的价值,推导方向如图:

两种情况,分别是放物品1 和 不放物品1,我们要取最大值(毕竟求的是最大价值)

dp[1][4] = max(dp[0][4], dp[1][1] + 物品1 的价值)

以上过程,抽象化如下:

  • 不放物品i:背包容量为j,里面不放物品i的最大价值是dp[i - 1][j]。

  • 放物品i:背包空出物品i的容量后,背包容量为j - weight[i],dp[i][j - weight[i]] 为背包容量为j - weight[i]且不放物品i的最大价值,那么dp[i][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

递推公式: dp[i][j] = max(dp[i - 1][j], dp[i][j - weight[i]] + value[i]);

(注意,完全背包二维dp数组 和 01背包二维dp数组 递推公式的区别,01背包中是 dp[i - 1][j - weight[i]] + value[i])

关于完全背包的一维dp

二维数组解法01背包是继承上层左侧状态,完全背包是继承本层左侧状态。所以压缩成一维数组后是正向遍历。

java 复制代码
// 遍历每种物品
for (int i = 0; i < n; i++) {
    // 完全背包:正序遍历容量(从小到大)
    for (int j = weight[i]; j <= capacity; j++) {
        dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
    }
}

思维导图:

518.零钱兑换 II

题目链接https://leetcode.cn/problems/coin-change-ii/description/

给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。

示例 1:

  • 输入: amount = 5, coins = [1, 2, 5]
  • 输出: 4

解释: 有四种方式可以凑成总金额:

  • 5=5
  • 5=2+2+1
  • 5=2+1+1+1
  • 5=1+1+1+1+1

示例 2:

  • 输入: amount = 3, coins = [2]
  • 输出: 0
  • 解释: 只用面额2的硬币不能凑成总金额3。

示例 3:

  • 输入: amount = 10, coins = [10]
  • 输出: 1

注意,你可以假设:

  • 0 <= amount (总金额) <= 5000
  • 1 <= coin (硬币面额) <= 5000
  • 硬币种类不超过 500 种
  • 结果符合 32 位符号整数

总结

dp[j]:凑成总金额j的货币组合数为dp[j]

本题 二维dp 递推公式: dp[i][j] = dp[i - 1][j] + dp[i][j - coins[i]]

压缩成一维:dp[j] += dp[j - coins[i]]

这个递推公式大家应该不陌生了,我在讲解01背包题目的时候在这篇494. 目标和 (opens new window)中就讲解了,求装满背包有几种方法,公式都是:dp[j] += dp[j - nums[i]]

java 复制代码
class Solution {
    public int change(int amount, int[] coins) {
        int[] dp = new int[amount + 1];
        //初始化dp数组,表示金额为0时只有一种情况,也就是什么都不装
        dp[0] = 1;
        for (int coin : coins) {
            for (int j = coin; j <= amount; j++) {
                dp[j] += dp[j - coin];
            }
        }
        return dp[amount];
    }
}

377.组合总和 Ⅳ

题目链接https://leetcode.cn/problems/combination-sum-iv/description/

给定一个由正整数组成且不存在重复数字的数组,找出和为给定目标正整数的组合的个数。

示例:

  • nums = [1, 2, 3]
  • target = 4

所有可能的组合为: (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1)

请注意,顺序不同的序列被视作不同的组合。

因此输出为 7。

总结

本题题目描述说是求组合,但又说是可以元素相同顺序不同的组合算两个组合,其实就是求排列!

组合不强调顺序,(1,5)和(5,1)是同一个组合。

排列强调顺序,(1,5)和(5,1)是两个不同的排列。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

java 复制代码
class Solution {
    public int combinationSum4(int[] nums, int target) {
        int[] dp = new int[target + 1];
        dp[0] = 1;
        for (int i = 0; i <= target; i++) {
            for (int j = 0; j < nums.length; j++) {
                if (i >= nums[j]) {
                    dp[i] += dp[i - nums[j]];
                }
            }
        }
        return dp[target];
    }
}

70.爬楼梯 (进阶)

题目链接https://kamacoder.com/problempage.php?pid=1067

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬至多m (1 <= m < n)个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

输入描述:输入共一行,包含两个正整数,分别表示n, m

输出描述:输出一个整数,表示爬到楼顶的方法数。

输入示例:3 2

输出示例:3

提示:

当 m = 2,n = 3 时,n = 3 这表示一共有三个台阶,m = 2 代表你每次可以爬一个台阶或者两个台阶。

此时你有三种方法可以爬到楼顶。

  • 1 阶 + 1 阶 + 1 阶段
  • 1 阶 + 2 阶
  • 2 阶 + 1 阶

总结

java 复制代码
import java.util.Scanner;
class climbStairs{
    public static void main(String [] args){
        Scanner sc = new Scanner(System.in);
        int m, n;
        while (sc.hasNextInt()) {
            // 从键盘输入参数,中间用空格隔开
            n = sc.nextInt(); // 楼梯共n阶
            m = sc.nextInt(); // 1-m种走法

            // 求排列问题,先遍历背包再遍历物品
            int[] dp = new int[n + 1];
            dp[0] = 1;
            for (int j = 1; j <= n; j++) {
                for (int i = 1; i <= m; i++) {
                    if (j - i >= 0) dp[j] += dp[j - i];
                }
            }
            System.out.println(dp[n]);
        }
    }
}
相关推荐
rit843249917 小时前
基于GA-GM(1,1)模型的航空发电机状态趋势分析实现
算法
CQ_YM17 小时前
数据结构之哈希表
数据结构·算法·哈希算法·哈希表
qq_4335545417 小时前
C++ 进阶动态规划(小明的背包3)
开发语言·c++·动态规划
pursuit_csdn17 小时前
力扣周赛 - 479
算法·leetcode·职场和发展
飞天狗11117 小时前
C. Needle in a Haystack
算法
FMRbpm17 小时前
顺序表实现队列
数据结构·c++·算法·新手入门
飞天狗11117 小时前
G. Mukhammadali and the Smooth Array
数据结构·c++·算法
CQ_YM17 小时前
数据结构之树
数据结构·算法·
某林21217 小时前
SLAM 建图系统配置与启动架构
人工智能·stm32·单片机·嵌入式硬件·算法