量化研究--上线完成强大的金融数据库3.0系统

文章声明:本内容为个人的业余研究,和任何单位,机构没有关系,文章出现的股票代码,全部只是测试例子,不做投资参考,投资有风险,代码学习使用,不做商业用途,

2个月一个人开发,上万行代码,终于把我自己的数据库开发完成,上线使用,使用还是非常的方便的

服务器后端的开发,前端,后端,数据维护我一个人开发

教程直接进入我的量化网页看就可以,我上线了很多量化视频,我自己录的

点击数据库教程里面有详细的使用文档

数据还是非常全的

我录制了视频直接看就可以,后面的还在录

简单的使用教程比如读取问财数据

复制代码
from xms_quant_trader_data.xms_quant_trader_data import xms_quant_trader_data
api=xms_quant_trader_data(
    url='http://14.103.193.242',
    port='8080',
    password='test'
    )
df=api.get_wencai_data(query='热门股票涨停强度')
df=api.data_to_pandas(df)
print(df)

比如读取高频实时数据​​​​​​​

复制代码
from xms_quant_trader_data.xms_quant_trader_data import xms_quant_trader_data
api=xms_quant_trader_data(
    url='http://14.103.193.242',
    port='8080',
    password='test'
)
tick=api.get_full_tick(stock='000001.SZ')
print(tick['000001.SZ'])

比如读取股票的行情数据​​​​​​​

复制代码
from xms_quant_trader_data.xms_quant_trader_data import xms_quant_trader_data
api=xms_quant_trader_data(
    url='http://14.103.193.242',
    port='8080',
    password='test'
)
stock='600111.SH'
start_date='20250101'
end_date='20251205'
df=api.get_market_data_ex(stock_code=stock,
                        period='1d',
                        start_time=start_date,
                        end_time=end_date,count=-1)
df=api.data_to_pandas(df)
df['time']=df['time'].apply(lambda x: api.conv_time(x))
df['time']=df['time'].apply(lambda x: str(x)[:8])
print(df)

比如读取etf行情数据​​​​​​​

复制代码
from xms_quant_trader_data.xms_quant_trader_data import xms_quant_trader_data
api=xms_quant_trader_data(
    url='http://14.103.193.242',
    port='8080',
    password='test')
stock_code='159206.SZ'
start_date='20200101'
end_date='20251205'
count=-1
period='1d'
df=api.get_market_data_ex(
    stock_code=stock_code,
    start_time=start_date,
    end_time=end_date,
    count=-1,
    period=period,
)
df=api.data_to_pandas(df)
df['time']=df['time'].apply(lambda x: api.conv_time(x))
df['time']=df['time'].apply(lambda x:str(x)[:8])
print(df)

比如读取可转债的行情数据

复制代码
from xms_quant_trader_data.xms_quant_trader_data import xms_quant_trader_data
api=xms_quant_trader_data( 
    url='http://14.103.193.242',
    port='8080',
    password='test')
stock_code='123118.SZ'
start_date='20200101'
end_date='20251205'
count=-1
period='1d'
df=api.get_market_data_ex(
    stock_code=stock_code,
    start_time=start_date,
    end_time=end_date,
    count=-1,
    period=period
)
df=api.data_to_pandas(df)
df['time']=df['time'].apply(lambda x:api.conv_time(x))
df['time']=df['time'].apply(lambda x:str(x)[:8])
print(df)
相关推荐
jiang_changsheng3 分钟前
RTX 2080 Ti魔改22GB显卡的最优解ComfyUI教程
python·comfyui
JoySSLLian9 分钟前
手把手教你安装免费SSL证书(附宝塔/Nginx/Apache配置教程)
网络·人工智能·网络协议·tcp/ip·nginx·apache·ssl
BestSongC10 分钟前
行人摔倒检测系统 - 前端文档(1)
前端·人工智能·目标检测
模型时代16 分钟前
Anthropic明确拒绝在Claude中加入广告功能
人工智能·microsoft
夕小瑶20 分钟前
OpenClaw、Moltbook爆火,算力如何48小时内扩到1900张卡
人工智能
一枕眠秋雨>o<22 分钟前
透视算力:cann-tools如何让AI性能调优从玄学走向科学
人工智能
Re.不晚26 分钟前
MySQL进阶之战——索引、事务与锁、高可用架构的三重奏
数据库·mysql·架构
CoderCodingNo29 分钟前
【GESP】C++五级练习题 luogu-P1865 A % B Problem
开发语言·c++·算法
那个村的李富贵36 分钟前
昇腾CANN跨行业实战:五大新领域AI落地案例深度解析
人工智能·aigc·cann
老邓计算机毕设36 分钟前
SSM智慧社区信息化服务平台4v5hv(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面
数据库·ssm 框架·智慧社区、·信息化平台