量化研究--上线完成强大的金融数据库3.0系统

文章声明:本内容为个人的业余研究,和任何单位,机构没有关系,文章出现的股票代码,全部只是测试例子,不做投资参考,投资有风险,代码学习使用,不做商业用途,

2个月一个人开发,上万行代码,终于把我自己的数据库开发完成,上线使用,使用还是非常的方便的

服务器后端的开发,前端,后端,数据维护我一个人开发

教程直接进入我的量化网页看就可以,我上线了很多量化视频,我自己录的

点击数据库教程里面有详细的使用文档

数据还是非常全的

我录制了视频直接看就可以,后面的还在录

简单的使用教程比如读取问财数据

复制代码
from xms_quant_trader_data.xms_quant_trader_data import xms_quant_trader_data
api=xms_quant_trader_data(
    url='http://14.103.193.242',
    port='8080',
    password='test'
    )
df=api.get_wencai_data(query='热门股票涨停强度')
df=api.data_to_pandas(df)
print(df)

比如读取高频实时数据​​​​​​​

复制代码
from xms_quant_trader_data.xms_quant_trader_data import xms_quant_trader_data
api=xms_quant_trader_data(
    url='http://14.103.193.242',
    port='8080',
    password='test'
)
tick=api.get_full_tick(stock='000001.SZ')
print(tick['000001.SZ'])

比如读取股票的行情数据​​​​​​​

复制代码
from xms_quant_trader_data.xms_quant_trader_data import xms_quant_trader_data
api=xms_quant_trader_data(
    url='http://14.103.193.242',
    port='8080',
    password='test'
)
stock='600111.SH'
start_date='20250101'
end_date='20251205'
df=api.get_market_data_ex(stock_code=stock,
                        period='1d',
                        start_time=start_date,
                        end_time=end_date,count=-1)
df=api.data_to_pandas(df)
df['time']=df['time'].apply(lambda x: api.conv_time(x))
df['time']=df['time'].apply(lambda x: str(x)[:8])
print(df)

比如读取etf行情数据​​​​​​​

复制代码
from xms_quant_trader_data.xms_quant_trader_data import xms_quant_trader_data
api=xms_quant_trader_data(
    url='http://14.103.193.242',
    port='8080',
    password='test')
stock_code='159206.SZ'
start_date='20200101'
end_date='20251205'
count=-1
period='1d'
df=api.get_market_data_ex(
    stock_code=stock_code,
    start_time=start_date,
    end_time=end_date,
    count=-1,
    period=period,
)
df=api.data_to_pandas(df)
df['time']=df['time'].apply(lambda x: api.conv_time(x))
df['time']=df['time'].apply(lambda x:str(x)[:8])
print(df)

比如读取可转债的行情数据

复制代码
from xms_quant_trader_data.xms_quant_trader_data import xms_quant_trader_data
api=xms_quant_trader_data( 
    url='http://14.103.193.242',
    port='8080',
    password='test')
stock_code='123118.SZ'
start_date='20200101'
end_date='20251205'
count=-1
period='1d'
df=api.get_market_data_ex(
    stock_code=stock_code,
    start_time=start_date,
    end_time=end_date,
    count=-1,
    period=period
)
df=api.data_to_pandas(df)
df['time']=df['time'].apply(lambda x:api.conv_time(x))
df['time']=df['time'].apply(lambda x:str(x)[:8])
print(df)
相关推荐
好好学习啊天天向上1 天前
C盘容量不够,python , pip,安装包的位置
linux·python·pip
时见先生1 天前
Python库和conda搭建虚拟环境
开发语言·人工智能·python·自然语言处理·conda
二十雨辰1 天前
[python]-循环语句
服务器·python
a努力。1 天前
国家电网Java面试被问:混沌工程在分布式系统中的应用
java·开发语言·数据库·git·mysql·面试·职场和发展
Yvonne爱编码1 天前
Java 四大内部类全解析:从设计本质到实战应用
java·开发语言·python
wqwqweee1 天前
Flutter for OpenHarmony 看书管理记录App实战:搜索功能实现
开发语言·javascript·python·flutter·harmonyos
li_wen011 天前
文件系统(八):Linux JFFS2文件系统工作原理、优势与局限
大数据·linux·数据库·文件系统·jffs2
tobias.b1 天前
408真题解析-2010-7-数据结构-无向连通图
数据结构·算法·图论·计算机考研·408真题解析
wWYy.1 天前
详解redis(16):缓存击穿
数据库·redis·缓存
JosieBook1 天前
【数据库】Oracle迁移至KingbaseES:挑战、策略与最佳实践
数据库·oracle