【深度学习】CNN卷积神经网络基础

一、发展历程

只要包含了卷积层的网络都可以理解为卷积神经网络。

二、全连接层

神经元按列进行排列,并列与列的神经元进行全连接 ,就可以的得到BP神经网络。

eg:利用BP神经网络做车牌数字识别

将5*5的矩阵按行展开,并拼接成一个行向量,此时就可以将该行向量作为输入层

输出层期望:

训练:

三、卷积层

(一)卷积

卷积:滑动窗口在特征图进行滑动并计算。

目的:进行特征提取

卷积特性:拥有局部感知机制(以滑动窗口的形式进行计算),权值共享(滑动过程中窗口的值不会发生改变)。

普通神经网络:体量过大

多维(通道)特征向量做卷积操作,深度(通道channel)保持一致,如正常特征图RGB三个维度,那么卷积核理应保持三个维度。将每个维度的卷积核放到对应的维度上做卷积操作,最后求和。

  • 卷积核的channel与输入特征层的channel相同
  • 输出的特征矩阵channel与卷积核个数相同
  • bias偏移量:输出的特征矩阵直接和偏移量相加
  • 加上激活函数如何计算?

(二)激活函数

在计算过程中是一个线性的计算过程,为了使其具备非线性的计算能力。

(三)卷积计算越界处理

一般情况下在上下左右都补0,那么就加2p,在该例子中,只在右下补0了,加P就可以了。

四、池化层

对特征矩阵进行系数处理,减少数据运算量。

(一)MaxPooling下采样层

(二)AveragePooling下采样层

五、误差

(一)误差的计算



(二)误差的反向传播

以W11为例:


(三)权重的更新

1、损失梯度及参数更新


2、优化器optimazer

目的:使网络得到更快地收敛




相关推荐
Tipriest_6 小时前
torch训练出的模型的组成以及模型训练后的使用和分析办法
人工智能·深度学习·torch·utils
QuiteCoder6 小时前
深度学习的范式演进、架构前沿与通用人工智能之路
人工智能·深度学习
周名彥6 小时前
### 天脑体系V∞·13824D完全体终极架构与全域落地研究报告 (生物计算与隐私计算融合版)
人工智能·神经网络·去中心化·量子计算·agi
MoonBit月兔7 小时前
年终 Meetup:走进腾讯|AI 原生编程与 Code Agent 实战交流会
大数据·开发语言·人工智能·腾讯云·moonbit
大模型任我行7 小时前
人大:熵引导的LLM有限数据训练
人工智能·语言模型·自然语言处理·论文笔记
weixin_468466857 小时前
YOLOv13结合代码原理详细解析及模型安装与使用
人工智能·深度学习·yolo·计算机视觉·图像识别·目标识别·yolov13
蹦蹦跳跳真可爱5897 小时前
Python----大模型(GPT-2模型训练加速,训练策略)
人工智能·pytorch·python·gpt·embedding
xwill*7 小时前
π∗0.6: a VLA That Learns From Experience
人工智能·pytorch·python
jiayong238 小时前
知识库概念与核心价值01
java·人工智能·spring·知识库
雨轩剑8 小时前
做 AI 功能不难,难的是把 App 发布上架
人工智能·开源软件