移动端数字人 Ultralight-Digital-Human 算法笔记

目录

[Ultralight-Digital-Human 数字人算法](#Ultralight-Digital-Human 数字人算法)

视音频对齐同步模型:SyncNet

[MNN TaoAvatar 无网手机运行数字人开源](#MNN TaoAvatar 无网手机运行数字人开源)

[metahuman-stream 改名为livetalking](#metahuman-stream 改名为livetalking)


Ultralight-Digital-Human 数字人算法

参考资料

项目代码:https://github.com/anliyuan/Ultralight-Digital-Human

人脸检测(SCRFD):Sample and Computation Redistribution for Efficient Face Detection

https://arxiv.org/pdf/2105.04714

https://zhuanlan.zhihu.com/p/388842796

模型:scrfd_2.5g_kps.onnx

人脸关键点检测(PFLD):A Practical Facial Landmark Detector

https://arxiv.org/pdf/1902.10859

https://zhuanlan.zhihu.com/p/65557195

模型:checkpoint_epoch_335.pth.tar (实际输出了110个坐标点)

音频特征提取,两种方案

HuBert:

WeNet:

视音频对齐同步模型:SyncNet

项目地址:https://github.com/joonson/sync

https://github.com/anliyuan/Ultralight-Digital-Human

首先我们需要提取音频特征,我用了两个不同的特征提取起,分别是wenet和hubert,感谢他们。

When you using wenet, you neet to ensure that your video frame rate is 20, and for hubert,your video frame rate should be 25.

如果你选择使用wenet的话,你必须保证你视频的帧率是20fps,如果选择hubert,视频帧率必须是25fps。

In my experiments, hubert performs better, but wenet is faster and can run in real time on mobile devices.

在我的实验中,hubert的效果更好,但是wenet速度更快,可以在移动端上实时运行

And other steps are in data_utils/process.py, you just run it like this.

其他步骤都写在data_utils/process.py里面了,没什么特别要注意的。

复制代码
cd data_utils
python process.py YOUR_VIDEO_PATH --asr hubert

MNN TaoAvatar 无网手机运行数字人开源

metahuman-stream 改名为livetalking

为避免与3d数字人混淆,原项目metahuman-stream改名为livetalking,原有链接地址继续可用

相关推荐
大模型实验室Lab4AI2 小时前
西北工业大学 StereoMV2D 突破 3D 物体检测深度难题,精度与效率兼得
人工智能·计算机视觉·目标跟踪
爱打代码的小林2 小时前
opencv基础(轮廓检测、绘制与特征)
人工智能·opencv·计算机视觉
zhangrelay2 小时前
ROS云课三分钟-cmake默认版本和升级-260120
笔记·学习
Lun3866buzha3 小时前
【数学表达式识别】基于计算机视觉技术的数学符号与数字识别系统实现_1
人工智能·计算机视觉
lkbhua莱克瓦243 小时前
JavaScript核心语法
开发语言·前端·javascript·笔记·html·ecmascript·javaweb
SmartBrain3 小时前
Agent 知识总结
服务器·数据库·笔记
杨浦老苏3 小时前
离线优先的自托管笔记应用Anchor
笔记·docker·群晖
CryptoPP4 小时前
主流国际股票行情API接口横向对比:如何选择适合你的数据源?
大数据·笔记·金融·区块链
Dyanic4 小时前
DSFuse:一种用于特征保真度的红外与可见光图像融合的双扩散结构
人工智能·机器学习·计算机视觉
代码游侠4 小时前
嵌入式开发——ARM Cortex-A7内核和i.MX6处理器相关的底层头文件
arm开发·笔记·嵌入式硬件·学习·架构