
🎁个人主页:User_芊芊君子
🎉欢迎大家点赞👍评论📝收藏⭐文章
🔍系列专栏:Java.数据结构


【前言】
二叉树构造是算法中递归分治思想的经典应用,而通过前序与中序遍历序列还原二叉树,更是力扣考察二叉树特性的高频题。前序"根左右"、中序"左根右"的遍历特性,是逐层确定根节点、划分左右子树的关键。本文将从递归分治思想出发,拆解该问题的实现逻辑,分析代码设计的核心细节。
文章目录:
一、从前序遍历和中序遍历构造二叉树
链接直达:从前序遍历和中序遍历构造二叉树

二、思路分析
根据递归分治思想:
- 前序遍历:根节点--->左子树--->右子树;找到前序序列的第一个元素就是根节点;
- 中序遍历:左子树--->根节点--->右子树;找到根节点在中序序列中的位置,从而确定左子树和右子树;
- 递归处理:重复上面的步骤,依次确定子树的根节点并构建子树,直至子树为空。
三、代码详解
1.代码分析
preorder:前序遍历数组;inorder: 中序遍历数组;成员变量 preIndex: 用于记录前序遍历中当前根节点的索引 (通过通过全局递增依次取前序序列的根节点)findVal 方法:查找根节点在中序序列中的索引rootIndex;递归方法buildTreeChild:
- 递归终止条件:当 inbegin>inend ,说明当前子树无节点,返回null;
- 构建根节点,取前序数组preIndex位置的元素作为根节点;
- 划分左右子树,通过findVal方法找到根节点在中序序列中的索引rootIndex,inbegin ~ rootIndex-1为左子树,rootIndex+1 ~ inend为右子树
2.代码展示
java
public int preIndex;
public TreeNode buildTree(int[] preorder, int[] inorder) {
return buildTreeChild(preorder, inorder, 0 ,inorder.length-1);
}
public int findVal(int[] inorder,int inbegin,int inend,int key){
for(int i = inbegin;i<=inend;i++){
if(inorder[i]==key){
return i;
}
}
return -1;
}
public TreeNode buildTreeChild(int[] preorder, int[] inorder,int inbegin,int inend) {
//递归终止条件:当前子树中序区间无节点
if(inbegin>inend){
return null;
}
//前序序列Index位置作为根节点
TreeNode root = new TreeNode(preorder[preIndex]);
//在中序序列中找到根节点的索引
int rootIndex = findVal(inorder,inbegin,inend,preorder[preIndex]);
//preIndex递增,指向下一个子树根节点
preIndex++;
//递归左子树,范围:inbegin ~ rootIndex-1
root.left = buildTreeChild(preorder,inorder,inbegin,rootIndex-1);
//递归左子树,范围:rootIndex+1 ~ inend
root.right = buildTreeChild(preorder,inorder,rootIndex+1,inend);
return root;
}
【总结】
本文围绕前序+中序构建二叉树问题,解析了递归分治的解题思路:依托前序确定根节点,通过中序划分左右子树区间,再递归构建子树至区间为空。代码中用 prIndex 追踪前序根节点位置,借 findVal定位中序根节点索引完成边界划分,核心是对遍历特性的运用与递归终止条件的设置。此外,还可通过哈希表优化中序查找效率,该思路也为后序+中序构建二叉树等同类问题提供了参考。

