some 知识点 knowledge

输出 查看模型结构 使用print(model) model.name_module() model.named_parameters()等方式查看层级结构

对于vit reanet yolox等常见架构 结合官方文档和源吗

确定可冻结/可训练的模块 在vit中 可以冻结 patch_embed 和前几层blocks 只微调后面几层+分类头

通过requires_grad控制梯度更新 冻结backbone 解冻特定层

微调的时候 不同模块用不同的学习率

还有的是在不同的epoch使用不同的学习率

学习率调度知识点:

按epoch变化 step decay 阶梯衰减 每隔固定epoch 学习率*一个衰减因子

多阶段衰减,在预设的epoch节点 衰减

linear warmup_decay 线性预热+衰减 前几个epoch线性增加 learning rate 之后按照step/cosine衰减

啥是cosine decay?余弦衰减 学习率就像余弦的图像一样衰减下来

关于早停机制、保存最佳模型、最终模型是否最优

在深度学习训练中,训练loss会持续下降,但是验证指标(比如准确率 mAp f1 )往往会线上升后下降 这就是过拟合

F1的计算就是:

不能只是保存最后的checkpoint 而是要监控验证指标,保存历史最佳

最好的标准是自己决定的:你所关心的指标达到最优就是 最好

早停机制 :当模型在验证集上不再变好时,提前终止训练, 在每个epoch 或者是n个step 在验证集上评估指标 如果连续 m个epoch没有提升,就停止训练

让我想起了一个叫做优化器的东西。

optimizer = torch.optim.AdamW(

model.parameters(),#model.parameters这些参数是需要被更新的

lr=5e-5,#学习率

weight_decay=0.05,#衰减

betas=(0.9, 0.98) # ViT 常用 beta1=0.9 当前梯度占0.1 过去梯度占0.9 beta2=0.98梯度平方的平滑,控制步长缩放,防止某些参数更新太猛

scheduler = get_cosine_schedule_with_warmup(

optimizer,

num_warmup_steps=500,#学习率这样持续500个step 注意step和epoch的区别 训练一次就能看出来了 epoch是多个step

num_training_steps=total_steps

)

相关推荐
deephub9 小时前
LLM推理时计算技术详解:四种提升大模型推理能力的方法
人工智能·深度学习·大语言模型·推理时计算
chian-ocean9 小时前
智能多模态助手实战:基于 `ops-transformer` 与开源 LLM 构建 LLaVA 风格推理引擎
深度学习·开源·transformer
慢半拍iii9 小时前
对比源码解读:ops-nn中卷积算子的硬件加速实现原理
人工智能·深度学习·ai·cann
一枕眠秋雨>o<9 小时前
深度解读 CANN ops-nn:昇腾 AI 神经网络算子库的核心引擎
人工智能·深度学习·神经网络
算法狗210 小时前
大模型面试题:混合精度训练的缺点是什么
人工智能·深度学习·机器学习·语言模型
熊文豪10 小时前
从零开始:基于CANN ops-transformer的自定义算子开发指南
人工智能·深度学习·transformer·cann
chian-ocean10 小时前
视觉新范式:基于 `ops-transformer` 的 Vision Transformer 高效部署
人工智能·深度学习·transformer
User_芊芊君子10 小时前
CANN数学计算基石ops-math深度解析:高性能科学计算与AI模型加速的核心引擎
人工智能·深度学习·神经网络·ai
程序员清洒11 小时前
CANN模型安全:从对抗防御到隐私保护的全栈安全实战
人工智能·深度学习·安全
User_芊芊君子12 小时前
CANN_PTO_ISA虚拟指令集全解析打造跨平台高性能计算的抽象层
人工智能·深度学习·神经网络