【02】Apache Flink 物化表与流批一体处理

📋 概述

物化表 (Materialized Tables) 是 Apache Flink 2.x 的核心特性之一,实现了真正的流批一体处理。本文档详细介绍物化表的概念、实现原理、使用方法和最佳实践。

🎯 物化表核心概念

什么是物化表

物化表是一种特殊的表,它将查询结果物理存储起来,并能够根据源数据的变化自动更新。在Flink中,物化表桥接了流处理和批处理,提供了统一的数据视图。

核心特性

1. 自动刷新

  • 基于时间的自动刷新 (FRESHNESS)
  • 基于数据变化的触发刷新
  • 手动刷新控制

2. 流批统一

  • 流式数据实时写入
  • 批量数据历史回填
  • 统一的查询接口

3. 存储优化

  • 支持多种存储格式 (Parquet, ORC, Iceberg)
  • 自动分区管理
  • 压缩和索引优化

🏗️ 物化表语法详解

基础语法

sql 复制代码
-- 创建物化表的基本语法
CREATE MATERIALIZED TABLE [IF NOT EXISTS] table_name (
    column_name data_type [COMMENT 'column_comment'],
    ...
    [PRIMARY KEY (column_list) NOT ENFORCED]
) [COMMENT 'table_comment']
[PARTITIONED BY (partition_column, ...)]
[WITH (
    'key1' = 'value1',
    'key2' = 'value2',
    ...
)]
[FRESHNESS = INTERVAL 'time_interval' time_unit]
AS select_statement;

完整示例

sql 复制代码
-- 电商订单汇总物化表
CREATE MATERIALIZED TABLE order_summary (
    product_id BIGINT COMMENT '商品ID',
    order_date DATE COMMENT '订单日期',
    total_orders BIGINT COMMENT '订单总数',
    total_amount DECIMAL(15,2) COMMENT '总金额',
    avg_amount DECIMAL(10,2) COMMENT '平均订单金额',
    unique_customers BIGINT COMMENT '独立客户数',
    PRIMARY KEY (product_id, order_date) NOT ENFORCED
) COMMENT '商品订单日汇总表'
PARTITIONED BY (order_date)
WITH (
    'format' = 'parquet',
    'compression' = 'snappy',
    'partition.time-extractor.timestamp-pattern' = 'yyyy-MM-dd',
    'sink.partition-commit.policy.kind' = 'metastore,success-file'
)
FRESHNESS = INTERVAL '1' HOUR
AS 
SELECT 
    product_id,
    DATE(order_time) as order_date,
    COUNT(*) as total_orders,
    SUM(amount) as total_amount,
    AVG(amount) as avg_amount,
    COUNT(DISTINCT customer_id) as unique_customers
FROM orders
WHERE order_time >= CURRENT_DATE - INTERVAL '30' DAY
GROUP BY product_id, DATE(order_time);

1. 可选的FRESHNESS子句

在Flink 2.2中,FRESHNESS子句不再是强制性的:

sql 复制代码
-- Flink 2.2: FRESHNESS是可选的
CREATE MATERIALIZED TABLE sales_summary (
    region STRING,
    total_sales DECIMAL(15,2),
    PRIMARY KEY (region) NOT ENFORCED
) WITH (
    'format' = 'parquet'
)
-- 不指定FRESHNESS,使用默认策略
AS SELECT 
    region,
    SUM(amount) as total_sales
FROM sales_stream
GROUP BY region;

2. MaterializedTableEnricher接口

新的扩展点允许自定义默认行为:

java 复制代码
public class SmartMaterializedTableEnricher implements MaterializedTableEnricher {
    
    @Override
    public CatalogMaterializedTable enrich(
            ObjectIdentifier identifier,
            CatalogMaterializedTable originalTable,
            EnrichmentContext context) {
        
        // 智能推断刷新频率
        Duration inferredFreshness = inferFreshnessFromUpstream(
            originalTable.getDefinitionQuery(),
            context
        );
        
        // 优化存储配置
        Map<String, String> optimizedOptions = optimizeStorageOptions(
            originalTable.getOptions(),
            context.getTableSize(),
            context.getQueryPatterns()
        );
        
        return CatalogMaterializedTable.newBuilder()
            .from(originalTable)
            .freshness(inferredFreshness)
            .options(optimizedOptions)
            .build();
    }
    
    private Duration inferFreshnessFromUpstream(String query, EnrichmentContext context) {
        // 分析上游表的更新频率
        // 根据数据量和查询模式推断最优刷新频率
        return Duration.ofMinutes(15); // 示例返回值
    }
    
    private Map<String, String> optimizeStorageOptions(
            Map<String, String> originalOptions,
            long tableSize,
            List<String> queryPatterns) {
        
        Map<String, String> optimized = new HashMap<>(originalOptions);
        
        // 根据表大小选择压缩算法
        if (tableSize > 1_000_000_000L) { // 1GB
            optimized.put("compression", "zstd");
        } else {
            optimized.put("compression", "snappy");
        }
        
        // 根据查询模式优化分区策略
        if (queryPatterns.stream().anyMatch(p -> p.contains("ORDER BY timestamp"))) {
            optimized.put("write.sort.order", "timestamp");
        }
        
        return optimized;
    }
}

3. 增强的Delta Join支持

sql 复制代码
-- Delta Join现在支持更多SQL模式
CREATE MATERIALIZED TABLE enriched_orders (
    order_id BIGINT,
    customer_id BIGINT,
    customer_name STRING,
    customer_tier STRING,
    product_id BIGINT,
    product_name STRING,
    amount DECIMAL(10,2),
    order_time TIMESTAMP(3),
    PRIMARY KEY (order_id) NOT ENFORCED
) WITH (
    'format' = 'iceberg',
    'write.upsert.enabled' = 'true'
)
FRESHNESS = INTERVAL '5' MINUTE
AS
SELECT 
    o.order_id,
    o.customer_id,
    c.name as customer_name,
    c.tier as customer_tier,
    o.product_id,
    p.name as product_name,
    o.amount,
    o.order_time
FROM orders o
LEFT JOIN customers FOR SYSTEM_TIME AS OF o.order_time AS c
    ON o.customer_id = c.id
LEFT JOIN products FOR SYSTEM_TIME AS OF o.order_time AS p
    ON o.product_id = p.id
WHERE o.amount > 0;

💡 实际应用场景

1. 实时数据仓库

sql 复制代码
-- 构建实时数据仓库的分层架构

-- ODS层:原始数据
CREATE TABLE ods_user_behavior (
    user_id BIGINT,
    item_id BIGINT,
    behavior_type STRING,
    timestamp_ms BIGINT,
    event_time AS TO_TIMESTAMP_LTZ(timestamp_ms, 3),
    WATERMARK FOR event_time AS event_time - INTERVAL '5' SECOND
) WITH (
    'connector' = 'kafka',
    'topic' = 'user_behavior'
);

-- DWD层:明细数据物化表
CREATE MATERIALIZED TABLE dwd_user_behavior_detail (
    user_id BIGINT,
    item_id BIGINT,
    behavior_type STRING,
    event_date DATE,
    event_hour INT,
    event_time TIMESTAMP(3),
    PRIMARY KEY (user_id, item_id, event_time) NOT ENFORCED
) PARTITIONED BY (event_date, event_hour)
WITH (
    'format' = 'parquet',
    'compression' = 'snappy'
)
FRESHNESS = INTERVAL '10' MINUTE
AS
SELECT 
    user_id,
    item_id,
    behavior_type,
    DATE(event_time) as event_date,
    HOUR(event_time) as event_hour,
    event_time
FROM ods_user_behavior;

-- DWS层:汇总数据物化表
CREATE MATERIALIZED TABLE dws_user_behavior_summary (
    user_id BIGINT,
    event_date DATE,
    pv_count BIGINT,
    buy_count BIGINT,
    cart_count BIGINT,
    fav_count BIGINT,
    active_hours ARRAY<INT>,
    PRIMARY KEY (user_id, event_date) NOT ENFORCED
) PARTITIONED BY (event_date)
WITH (
    'format' = 'parquet',
    'write.merge.enabled' = 'true'
)
FRESHNESS = INTERVAL '30' MINUTE
AS
SELECT 
    user_id,
    event_date,
    SUM(CASE WHEN behavior_type = 'pv' THEN 1 ELSE 0 END) as pv_count,
    SUM(CASE WHEN behavior_type = 'buy' THEN 1 ELSE 0 END) as buy_count,
    SUM(CASE WHEN behavior_type = 'cart' THEN 1 ELSE 0 END) as cart_count,
    SUM(CASE WHEN behavior_type = 'fav' THEN 1 ELSE 0 END) as fav_count,
    COLLECT(DISTINCT event_hour) as active_hours
FROM dwd_user_behavior_detail
GROUP BY user_id, event_date;

-- ADS层:应用数据物化表
CREATE MATERIALIZED TABLE ads_user_profile (
    user_id BIGINT,
    total_pv BIGINT,
    total_buy BIGINT,
    avg_daily_pv DOUBLE,
    preferred_hours ARRAY<INT>,
    user_level STRING,
    last_active_date DATE,
    PRIMARY KEY (user_id) NOT ENFORCED
) WITH (
    'format' = 'iceberg',
    'write.upsert.enabled' = 'true'
)
FRESHNESS = INTERVAL '1' HOUR
AS
SELECT 
    user_id,
    SUM(pv_count) as total_pv,
    SUM(buy_count) as total_buy,
    AVG(pv_count) as avg_daily_pv,
    ARRAY_AGG(DISTINCT active_hour) as preferred_hours,
    CASE 
        WHEN SUM(buy_count) >= 10 THEN 'VIP'
        WHEN SUM(buy_count) >= 3 THEN 'REGULAR'
        ELSE 'NEW'
    END as user_level,
    MAX(event_date) as last_active_date
FROM (
    SELECT 
        user_id,
        event_date,
        pv_count,
        buy_count,
        EXPLODE(active_hours) as active_hour
    FROM dws_user_behavior_summary
    WHERE event_date >= CURRENT_DATE - INTERVAL '30' DAY
) t
GROUP BY user_id;

2. 实时OLAP分析

sql 复制代码
-- 实时销售分析物化表
CREATE MATERIALIZED TABLE sales_analysis (
    region STRING,
    product_category STRING,
    time_window TIMESTAMP(3),
    sales_amount DECIMAL(15,2),
    order_count BIGINT,
    unique_customers BIGINT,
    avg_order_value DECIMAL(10,2),
    growth_rate DOUBLE,
    PRIMARY KEY (region, product_category, time_window) NOT ENFORCED
) PARTITIONED BY (region)
WITH (
    'format' = 'parquet',
    'compression' = 'zstd',
    'write.merge.enabled' = 'true'
)
FRESHNESS = INTERVAL '5' MINUTE
AS
SELECT 
    region,
    product_category,
    TUMBLE_START(order_time, INTERVAL '1' HOUR) as time_window,
    SUM(amount) as sales_amount,
    COUNT(*) as order_count,
    COUNT(DISTINCT customer_id) as unique_customers,
    AVG(amount) as avg_order_value,
    -- 计算同比增长率
    (SUM(amount) - LAG(SUM(amount), 24) OVER (
        PARTITION BY region, product_category 
        ORDER BY TUMBLE_START(order_time, INTERVAL '1' HOUR)
    )) / LAG(SUM(amount), 24) OVER (
        PARTITION BY region, product_category 
        ORDER BY TUMBLE_START(order_time, INTERVAL '1' HOUR)
    ) * 100 as growth_rate
FROM orders
GROUP BY 
    region, 
    product_category, 
    TUMBLE(order_time, INTERVAL '1' HOUR);

-- 基于物化表的交互式查询
SELECT 
    region,
    product_category,
    AVG(sales_amount) as avg_hourly_sales,
    MAX(growth_rate) as max_growth_rate,
    COUNT(*) as data_points
FROM sales_analysis
WHERE time_window >= CURRENT_TIMESTAMP - INTERVAL '7' DAY
GROUP BY region, product_category
ORDER BY avg_hourly_sales DESC;

3. 实时特征工程

sql 复制代码
-- 用户特征物化表
CREATE MATERIALIZED TABLE user_features (
    user_id BIGINT,
    feature_timestamp TIMESTAMP(3),
    -- 基础特征
    age_group STRING,
    gender STRING,
    city STRING,
    -- 行为特征
    last_7d_pv BIGINT,
    last_7d_buy BIGINT,
    last_7d_amount DECIMAL(10,2),
    -- 偏好特征
    preferred_categories ARRAY<STRING>,
    preferred_brands ARRAY<STRING>,
    -- 时间特征
    active_hours ARRAY<INT>,
    active_days ARRAY<STRING>,
    -- 统计特征
    avg_order_value DECIMAL(10,2),
    purchase_frequency DOUBLE,
    -- 实时特征
    last_active_time TIMESTAMP(3),
    current_session_pv INT,
    PRIMARY KEY (user_id) NOT ENFORCED
) WITH (
    'format' = 'iceberg',
    'write.upsert.enabled' = 'true',
    'read.streaming.enabled' = 'true'
)
FRESHNESS = INTERVAL '10' MINUTE
AS
SELECT 
    u.user_id,
    CURRENT_TIMESTAMP as feature_timestamp,
    -- 基础信息
    u.age_group,
    u.gender,
    u.city,
    -- 最近7天行为统计
    COALESCE(b7d.pv_count, 0) as last_7d_pv,
    COALESCE(b7d.buy_count, 0) as last_7d_buy,
    COALESCE(b7d.total_amount, 0) as last_7d_amount,
    -- 偏好分析
    COALESCE(pref.categories, ARRAY[]) as preferred_categories,
    COALESCE(pref.brands, ARRAY[]) as preferred_brands,
    -- 时间模式
    COALESCE(time_pattern.hours, ARRAY[]) as active_hours,
    COALESCE(time_pattern.days, ARRAY[]) as active_days,
    -- 统计特征
    COALESCE(stats.avg_order_value, 0) as avg_order_value,
    COALESCE(stats.purchase_frequency, 0) as purchase_frequency,
    -- 实时状态
    COALESCE(realtime.last_active_time, TIMESTAMP '1970-01-01 00:00:00') as last_active_time,
    COALESCE(realtime.session_pv, 0) as current_session_pv
FROM users u
LEFT JOIN (
    -- 最近7天行为汇总
    SELECT 
        user_id,
        COUNT(CASE WHEN behavior_type = 'pv' THEN 1 END) as pv_count,
        COUNT(CASE WHEN behavior_type = 'buy' THEN 1 END) as buy_count,
        SUM(CASE WHEN behavior_type = 'buy' THEN amount ELSE 0 END) as total_amount
    FROM user_behavior
    WHERE event_time >= CURRENT_TIMESTAMP - INTERVAL '7' DAY
    GROUP BY user_id
) b7d ON u.user_id = b7d.user_id
LEFT JOIN (
    -- 偏好分析
    SELECT 
        user_id,
        COLLECT(category) as categories,
        COLLECT(brand) as brands
    FROM (
        SELECT 
            ub.user_id,
            p.category,
            p.brand,
            ROW_NUMBER() OVER (PARTITION BY ub.user_id, p.category ORDER BY COUNT(*) DESC) as rn1,
            ROW_NUMBER() OVER (PARTITION BY ub.user_id, p.brand ORDER BY COUNT(*) DESC) as rn2
        FROM user_behavior ub
        JOIN products p ON ub.item_id = p.id
        WHERE ub.behavior_type = 'buy'
        AND ub.event_time >= CURRENT_TIMESTAMP - INTERVAL '30' DAY
        GROUP BY ub.user_id, p.category, p.brand
    ) ranked
    WHERE rn1 <= 3 OR rn2 <= 3
    GROUP BY user_id
) pref ON u.user_id = pref.user_id
LEFT JOIN (
    -- 时间模式分析
    SELECT 
        user_id,
        COLLECT(DISTINCT HOUR(event_time)) as hours,
        COLLECT(DISTINCT DAYNAME(event_time)) as days
    FROM user_behavior
    WHERE event_time >= CURRENT_TIMESTAMP - INTERVAL '30' DAY
    GROUP BY user_id
) time_pattern ON u.user_id = time_pattern.user_id
LEFT JOIN (
    -- 统计特征
    SELECT 
        user_id,
        AVG(amount) as avg_order_value,
        COUNT(*) / 30.0 as purchase_frequency
    FROM user_behavior
    WHERE behavior_type = 'buy'
    AND event_time >= CURRENT_TIMESTAMP - INTERVAL '30' DAY
    GROUP BY user_id
) stats ON u.user_id = stats.user_id
LEFT JOIN (
    -- 实时状态
    SELECT 
        user_id,
        MAX(event_time) as last_active_time,
        COUNT(CASE WHEN event_time >= CURRENT_TIMESTAMP - INTERVAL '30' MINUTE 
                   AND behavior_type = 'pv' THEN 1 END) as session_pv
    FROM user_behavior
    WHERE event_time >= CURRENT_TIMESTAMP - INTERVAL '1' HOUR
    GROUP BY user_id
) realtime ON u.user_id = realtime.user_id;

🔧 物化表管理

1. 手动刷新

sql 复制代码
-- 手动刷新物化表
ALTER MATERIALIZED TABLE sales_summary REFRESH;

-- 刷新特定分区
ALTER MATERIALIZED TABLE sales_summary REFRESH PARTITION (region = 'US', date = '2025-01-01');

2. 暂停和恢复

sql 复制代码
-- 暂停物化表自动刷新
ALTER MATERIALIZED TABLE sales_summary SUSPEND;

-- 恢复物化表自动刷新
ALTER MATERIALIZED TABLE sales_summary RESUME;

3. 修改刷新频率

sql 复制代码
-- 修改刷新频率
ALTER MATERIALIZED TABLE sales_summary SET FRESHNESS = INTERVAL '30' MINUTE;

4. 查看物化表状态

sql 复制代码
-- 查看物化表信息
DESCRIBE MATERIALIZED TABLE sales_summary;

-- 查看刷新历史
SELECT * FROM INFORMATION_SCHEMA.MATERIALIZED_TABLE_REFRESHES 
WHERE table_name = 'sales_summary'
ORDER BY refresh_time DESC
LIMIT 10;

📊 性能优化

1. 分区策略

sql 复制代码
-- 时间分区优化
CREATE MATERIALIZED TABLE time_partitioned_sales (
    product_id BIGINT,
    sales_date DATE,
    sales_amount DECIMAL(15,2),
    PRIMARY KEY (product_id, sales_date) NOT ENFORCED
) PARTITIONED BY (sales_date)
WITH (
    'partition.time-extractor.timestamp-pattern' = 'yyyy-MM-dd',
    'sink.partition-commit.delay' = '1h',
    'sink.partition-commit.policy.kind' = 'metastore,success-file'
)
FRESHNESS = INTERVAL '1' HOUR
AS SELECT ...;

-- 多级分区
CREATE MATERIALIZED TABLE multi_partitioned_data (
    region STRING,
    category STRING,
    event_date DATE,
    event_hour INT,
    metrics DECIMAL(15,2),
    PRIMARY KEY (region, category, event_date, event_hour) NOT ENFORCED
) PARTITIONED BY (region, event_date, event_hour)
WITH (
    'partition.time-extractor.timestamp-pattern' = 'yyyy-MM-dd HH',
    'sink.partition-commit.policy.kind' = 'metastore'
)
AS SELECT ...;

2. 存储格式优化

sql 复制代码
-- 使用Iceberg格式进行优化
CREATE MATERIALIZED TABLE iceberg_optimized (
    id BIGINT,
    data STRING,
    timestamp_col TIMESTAMP(3),
    PRIMARY KEY (id) NOT ENFORCED
) WITH (
    'connector' = 'iceberg',
    'catalog-name' = 'hadoop_catalog',
    'warehouse' = 's3://my-bucket/warehouse',
    'format-version' = '2',
    'write.upsert.enabled' = 'true',
    'write.merge.mode' = 'copy-on-write',
    'write.target-file-size-bytes' = '134217728' -- 128MB
)
AS SELECT ...;

3. 增量更新优化

sql 复制代码
-- 配置增量更新
CREATE MATERIALIZED TABLE incremental_summary (
    key_col STRING,
    sum_value BIGINT,
    count_value BIGINT,
    PRIMARY KEY (key_col) NOT ENFORCED
) WITH (
    'format' = 'parquet',
    'write.merge.enabled' = 'true',
    'changelog.mode' = 'upsert'
)
FRESHNESS = INTERVAL '5' MINUTE
AS
SELECT 
    key_col,
    SUM(value) as sum_value,
    COUNT(*) as count_value
FROM source_table
WHERE update_time >= CURRENT_TIMESTAMP - INTERVAL '1' HOUR
GROUP BY key_col;

🚀 最佳实践

1. 设计原则

选择合适的刷新频率:

sql 复制代码
-- 根据业务需求选择刷新频率
-- 实时报表: 1-5分钟
FRESHNESS = INTERVAL '5' MINUTE

-- 小时级分析: 10-30分钟  
FRESHNESS = INTERVAL '15' MINUTE

-- 日级报表: 1-6小时
FRESHNESS = INTERVAL '1' HOUR

合理的分区设计:

sql 复制代码
-- 基于查询模式设计分区
-- 时间范围查询 -> 时间分区
PARTITIONED BY (event_date)

-- 地域分析 -> 地域分区
PARTITIONED BY (region)

-- 多维分析 -> 多级分区
PARTITIONED BY (region, event_date)

2. 监控和告警

sql 复制代码
-- 创建监控视图
CREATE VIEW materialized_table_health AS
SELECT 
    table_name,
    last_refresh_time,
    refresh_status,
    CURRENT_TIMESTAMP - last_refresh_time as staleness,
    CASE 
        WHEN refresh_status = 'FAILED' THEN 'CRITICAL'
        WHEN CURRENT_TIMESTAMP - last_refresh_time > INTERVAL '1' HOUR THEN 'WARNING'
        ELSE 'HEALTHY'
    END as health_status
FROM INFORMATION_SCHEMA.MATERIALIZED_TABLE_REFRESHES;

3. 成本优化

sql 复制代码
-- 使用压缩减少存储成本
WITH (
    'format' = 'parquet',
    'compression' = 'zstd',  -- 高压缩比
    'parquet.block.size' = '268435456'  -- 256MB块大小
)

-- 设置数据保留策略
WITH (
    'sink.partition-commit.policy.kind' = 'metastore,success-file',
    'partition.expiration-time' = '30d'  -- 30天后自动删除
)

🆚 Flink物化表与传统物化视图对比

其实物化表听着会不会想起doris的物化视图

与Doris物化视图的比较

特性 Flink物化表 Doris物化视图
定位 流批一体的数据表结构 OLAP分析加速
更新方式 基于FRESHNESS的自动刷新 基于触发器或手动刷新
数据模型 支持流式和批量更新 主要面向批量更新
查询能力 支持实时和批处理查询 优化OLAP查询
存储引擎 可插拔存储格式(Iceberg、Parquet等) 内置存储引擎
生态集成 与Flink生态无缝集成 与Doris生态集成

架构差异


适用场景对比

Flink物化表更适合:

  • 实时数据仓库建设
  • 流批一体处理场景
  • 复杂事件处理(CEP)
  • 机器学习特征工程
  • 多引擎计算环境(Spark、Presto等)

Doris物化视图更适合:

  • 传统OLAP分析场景
  • 高性能即席查询
  • 报表和BI系统
  • 交互式数据分析
  • 单一OLAP引擎环境

混合架构最佳实践

sql 复制代码
-- 1. 使用Flink构建实时数据仓库
-- 创建实时数据层
CREATE MATERIALIZED TABLE real_time_orders (
    order_id BIGINT,
    customer_id BIGINT,
    product_id BIGINT,
    amount DECIMAL(10,2),
    order_time TIMESTAMP(3),
    PRIMARY KEY (order_id) NOT ENFORCED
) WITH (
    'connector' = 'iceberg',
    'write.upsert.enabled' = 'true'
)
FRESHNESS = INTERVAL '1' MINUTE
AS SELECT * FROM kafka_orders;

-- 2. 将Flink物化表数据同步到Doris
CREATE TABLE doris_orders (
    order_id BIGINT,
    customer_id BIGINT,
    product_id BIGINT,
    amount DECIMAL(10,2),
    order_time DATETIME
) UNIQUE KEY(order_id)
DISTRIBUTED BY HASH(order_id) BUCKETS 10;

-- 3. 在Doris中创建高性能物化视图用于BI分析
CREATE MATERIALIZED VIEW orders_daily_summary AS
SELECT 
    DATE(order_time) as order_date,
    product_id,
    COUNT(*) as order_count,
    SUM(amount) as total_amount,
    AVG(amount) as avg_amount
FROM doris_orders
GROUP BY DATE(order_time), product_id;

技术优势总结

Flink物化表的核心优势:

  1. 真正的流批一体: 统一API处理流数据和批数据
  2. 强大的计算能力: 支持复杂事件处理和状态计算
  3. 灵活的存储选择: 可选多种存储格式,适应不同场景
  4. 完善的时间语义: 支持事件时间和处理时间
  5. 生态丰富: 与大数据生态无缝集成

Doris物化视图的核心优势:

  1. 极致的查询性能: 针对OLAP场景深度优化
  2. 简单易用: 统一的SQL接口,降低使用门槛
  3. 高并发能力: MPP架构支持高并发查询
  4. 运维友好: 自成体系,运维复杂度低
  5. BI集成良好: 与主流BI工具深度集成

总结 : 物化表是Flink实现流批一体的核心技术,通过合理的设计和配置,可以构建高效的实时数据仓库和分析系统,为企业提供统一的数据视图和查询能力。与Doris物化视图相比,Flink物化表更适合实时流处理场景,而Doris物化视图则更专注于高性能OLAP分析,两者可以结合使用,构建更完整的数据解决方案。

相关推荐
Jerry Lau5 小时前
Flink CDC 入门实战:从原理到踩坑全记录 (datastream/SQL 双版本)
大数据·sql·flink
TG:@yunlaoda360 云老大5 小时前
腾讯云国际站代理商的TAPD如何帮助企业进行成本控制?
大数据·云计算·腾讯云
Hello.Reader5 小时前
Flink SQL ANALYZE TABLE手动采集表统计信息,让优化器“更懂数据”
大数据·sql·flink
ggabb5 小时前
新国标电动车爬坡困境:当限速25km/h遭遇安全危机,无责伤亡谁来买单?
大数据·人工智能·安全
羑悻的小杀马特5 小时前
破局IoT与大数据协同难题!Apache IoTDB用硬核性能打底、强生态护航,成行业新宠!
大数据·物联网·ai·apache·iotdb
Pocker_Spades_A5 小时前
时序数据库选型指南:用工程视角理解 Apache IoTDB
数据库·apache·时序数据库·iotdb
程途拾光1585 小时前
企业组织架构图导出Word 在线编辑免费工具
大数据·论文阅读·人工智能·信息可视化·架构·word·流程图
Giser探索家5 小时前
卫星遥感数据核心参数解析:空间分辨率与时间分辨率
大数据·图像处理·人工智能·深度学习·算法·计算机视觉
微盛企微增长小知识5 小时前
2025企业微信智能表格使用全指南:AI驱动的数据管理实战
大数据·人工智能·企业微信