1、无重复字符的最长子串
给定一个字符串 s ,请你找出其中不含有重复字符的 最长子串 的长度。
示例 1:
输入: s = "abcabcbb"
输出: 3
解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。注意 "bca" 和 "cab" 也是正确答案。
示例 2:
输入: s = "bbbbb"
输出: 1
解释: 因为无重复字符的最长子串是 "b",所以其长度为 1。
示例 3:
输入: s = "pwwkew"
输出: 3
解释: 因为无重复字符的最长子串是 "wke",所以其长度为 3。
请注意,你的答案必须是 子串 的长度,"pwke"是一个子序列,不是子串。
提示:
0 <= s.length <= 5 * 1e4s由英文字母、数字、符号和空格组成
方法一:滑动窗口
思路和算法
我们先用一个例子考虑如何在较优的时间复杂度内通过本题。
我们不妨以示例一中的字符串 abcabcbb 为例,找出从每一个字符开始的,不包含重复字符的最长子串,那么其中最长的那个字符串即为答案。对于示例一中的字符串,我们列举出这些结果,其中括号中表示选中的字符以及最长的字符串:
以 (a)bcabcbb 开始的最长字符串为 (abc)abcbb;
以 a(b)cabcbb 开始的最长字符串为 a(bca)bcbb;
以 ab(c)abcbb 开始的最长字符串为 ab(cab)cbb;
以 abc(a)bcbb 开始的最长字符串为 abc(abc)bb;
以 abca(b)cbb 开始的最长字符串为 abca(bc)bb;
以 abcab(c)bb 开始的最长字符串为 abcab(cb)b;
以 abcabc(b)b 开始的最长字符串为 abcabc(b)b;
以 abcabcb(b) 开始的最长字符串为 abcabcb(b)。
发现了什么?如果我们依次递增地枚举子串的起始位置,那么子串的结束位置也是递增的!这里的原因在于,假设我们选择字符串中的第 k 个字符作为起始位置,并且得到了不包含重复字符的最长子串的结束位置为 rk。那么当我们选择第 k+1 个字符作为起始位置时,首先从 k+1 到 rk的字符显然是不重复的,并且由于少了原本的第 k 个字符,我们可以尝试继续增大 rk,直到右侧出现了重复字符为止。
这样一来,我们就可以使用「滑动窗口」来解决这个问题了:
- 我们使用两个指针表示字符串中的某个子串(或窗口)的左右边界,其中左指针代表着上文中「枚举子串的起始位置」,而右指针即为上文中的 rk;
- 在每一步的操作中,我们会将左指针向右移动一格,表示我们开始枚举下一个字符作为起始位置,然后我们可以不断地向右移动右指针,但需要保证这两个指针对应的子串中没有重复的字符。在移动结束后,这个子串就对应着 以左指针开始的,不包含重复字符的最长子串。我们记录下这个子串的长度;
- 在枚举结束后,我们找到的最长的子串的长度即为答案。
判断重复字符
在上面的流程中,我们还需要使用一种数据结构来判断是否有重复的字符,常用的数据结构为哈希集合(即 C++ 中的 std::unordered_set,Java 中的 HashSet,Python 中的 set, JavaScript 中的 Set)。在左指针向右移动的时候,我们从哈希集合中移除一个字符,在右指针向右移动的时候,我们往哈希集合中添加一个字符。
至此,我们就完美解决了本题。
cpp
class Solution {
public:
int lengthOfLongestSubstring(string s) {
// 哈希集合,记录每个字符是否出现过
unordered_set<char> occ;
int n = s.size();
// 右指针,初始值为 -1,相当于我们在字符串的左边界的左侧,还没有开始移动
int rk = -1, ans = 0;
// 枚举左指针的位置,初始值隐性地表示为 -1
for (int i = 0; i < n; ++i) {
if (i != 0) {
// 左指针向右移动一格,移除一个字符
occ.erase(s[i - 1]);
}
while (rk + 1 < n && !occ.count(s[rk + 1])) {
// 不断地移动右指针
occ.insert(s[rk + 1]);
++rk;
}
// 第 i 到 rk 个字符是一个极长的无重复字符子串
ans = max(ans, rk - i + 1);
}
return ans;
}
};
2、找到字符串中所有字母异位词
给定两个字符串 s 和 p,找到 s中所有 p的 异位词的子串,返回这些子串的起始索引。不考虑答案输出的顺序。
示例 1:
输入: s = "cbaebabacd", p = "abc"
输出: [0,6]
解释:
起始索引等于 0 的子串是 "cba", 它是 "abc" 的异位词。
起始索引等于 6 的子串是 "bac", 它是 "abc" 的异位词。
示例 2:
输入: s = "abab", p = "ab"
输出: [0,1,2]
解释:
起始索引等于 0 的子串是 "ab", 它是 "ab" 的异位词。
起始索引等于 1 的子串是 "ba", 它是 "ab" 的异位词。
起始索引等于 2 的子串是 "ab", 它是 "ab" 的异位词。
提示:
1 <= s.length, p.length <= 3 * 1e4s和p仅包含小写字母
方法一:滑动窗口
思路
根据题目要求,我们需要在字符串 s 寻找字符串 p 的异位词。因为字符串 p 的异位词的长度一定与字符串 p 的长度相同,所以我们可以在字符串 s 中构造一个长度为与字符串 p 的长度相同的滑动窗口,并在滑动中维护窗口中每种字母的数量;当窗口中每种字母的数量与字符串 p 中每种字母的数量相同时,则说明当前窗口为字符串 p 的异位词。
算法
在算法的实现中,我们可以使用数组来存储字符串 p 和滑动窗口中每种字母的数量。
细节
当字符串 s 的长度小于字符串 p 的长度时,字符串 s 中一定不存在字符串 p 的异位词。但是因为字符串 s 中无法构造长度与字符串 p 的长度相同的窗口,所以这种情况需要单独处理。
cpp
class Solution {
public:
vector<int> findAnagrams(string s, string p) {
int sLen = s.size(), pLen = p.size();
if (sLen < pLen) {
return vector<int>();
}
vector<int> ans;
vector<int> sCount(26);
vector<int> pCount(26);
for (int i = 0; i < pLen; ++i) {
++sCount[s[i] - 'a'];
++pCount[p[i] - 'a'];
}
if (sCount == pCount) {
ans.emplace_back(0);
}
for (int i = 0; i < sLen - pLen; ++i) {
--sCount[s[i] - 'a'];
++sCount[s[i + pLen] - 'a'];
if (sCount == pCount) {
ans.emplace_back(i + 1);
}
}
return ans;
}
};