大语言模型实战(三)——词编码技术演进:从 “机器识字符” 到 “AI 懂语义”

词编码技术演进:从"机器识字符"到"AI懂语义"的四代革命

大家好,今天我们聊聊自然语言处理(NLP)的"地基"------词编码技术。从让机器"区分单词"到"理解语义",这背后是四代技术的迭代,正好对应四张经典示意图。

1. 独热编码------机器"能认词,但看不懂"

先看这张图(独热编码示意图):

它的逻辑很直接:给每个单词分配一个向量,只有单词对应的位置是1,其余全为0 。比如"time"对应[1,0,0,...],"fruit"对应[0,1,0,...]

这代技术的核心是"区分单词",但缺陷也很致命:

  • 语义割裂:任意两个词的向量都是"正交"的(相似度为0),机器根本不知道"苹果"和"香蕉"都是水果;
  • 内存爆炸:若词汇表有10万个单词,每个向量就要10万维,完全是资源浪费。

一句话总结:独热编码让机器"能认词",但完全"看不懂语义"。

2. Word2Vec------机器"能感知语义,但太死板"

为了破解独热编码的困境,Word2Vec来了(Word2Vec示意图)。

它的核心是**"降维+语义关联"**:通过一个训练好的Q矩阵,把高维独热向量压缩成低维稠密向量(比如图中5维转3维)。

这代技术的突破是:

  • 压缩维度:从10万维降到几百维,内存压力直接消失;
  • 语义关联:相似词的向量会更接近(比如"苹果"和"香蕉"的向量相似度高),机器终于能感知"它们是一类东西"。

但Word2Vec有个硬伤:它是静态词嵌入------同一个单词(比如"bank")在"河岸"和"银行"语境下,向量完全一样,机器分不清多义词。

3. ELMo模型------机器"能懂上下文,区分多义"

为了解决"多义词"问题,ELMo模型登场(ELMo示意图)。

左边例子很典型:"bank"既可以是"河岸",也可以是"银行"------Word2Vec分不清,但ELMo能。

它的核心是**"动态词嵌入":用"双层双向RNN"训练,同一个单词会根据上下文**生成不同的向量:

  • 当"bank"出现在"river"附近时,向量对应"河岸";
  • 当"bank"出现在"money"附近时,向量对应"银行"。

这代技术让机器终于"能结合语境理解单词",但缺点是:RNN是串行计算,处理长文本时效率很低。

4. Multi-head Self Attention------机器"能多角度懂语义,还高效"

最后是Transformer的核心:多头自注意力(Multi-head Self Attention示意图)。

它一次性解决了两个问题:

  • 多角度语义捕捉:"多头"意味着机器可以同时从多个维度关注句子(比如图中不同颜色的线代表不同"头")------有的头关注语法(如"it"和"is"的关联),有的头关注语义(如"making"和"difficult"的关联);
  • 并行计算:和RNN的串行不同,注意力是并行处理的,长文本效率直接提升10倍以上。

这代技术不仅让机器"懂上下文",还能"精准、高效地理解语义"------正是它,支撑了现在的GPT、BERT等大模型。

相关推荐
光锥智能7 分钟前
从连接机器到激活知识:探寻工业互联网深水区的山钢范式
人工智能
GHL2842710909 分钟前
分析式AI学习
人工智能·学习·ai编程
ujainu25 分钟前
CANN仓库中的AIGC性能极限挑战:昇腾软件栈如何榨干每一瓦算力
人工智能·开源
wenzhangli727 分钟前
ooderA2UI BridgeCode 深度解析:从设计原理到 Trae Solo Skill 实践
java·开发语言·人工智能·开源
brave and determined28 分钟前
CANN ops-nn算子库使用教程:实现神经网络在NPU上的加速计算
人工智能·深度学习·神经网络
brave and determined28 分钟前
CANN算子开发基础框架opbase完全解析
人工智能
一枕眠秋雨>o<34 分钟前
调度的艺术:CANN Runtime如何编织昇腾AI的时空秩序
人工智能
晚烛40 分钟前
CANN + 物理信息神经网络(PINNs):求解偏微分方程的新范式
javascript·人工智能·flutter·html·零售
爱吃烤鸡翅的酸菜鱼42 分钟前
CANN ops-math向量运算与特殊函数实现解析
人工智能·aigc
波动几何1 小时前
OpenClaw 构建指南:打造智能多工具编排运行时框架
人工智能