题目描述:
给定一个由 1(陆地)和 0(水)组成的矩阵,你需要计算岛屿的数量。岛屿由水平方向或垂直方向上相邻的陆地连接而成,并且四周都是水域。你可以假设矩阵外均被水包围。
输入描述:
第一行包含两个整数 N, M,表示矩阵的行数和列数。
后续 N 行,每行包含 M 个数字,数字为 1 或者 0。
输出描述:
输出一个整数,表示岛屿的数量。如果不存在岛屿,则输出 0。
输入示例:
4 5
1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1
输出示例:
3
提示信息

根据测试案例中所展示,岛屿数量共有 3 个,所以输出 3。
数据范围:
- 1 <= N, M <= 50
思路:
本题中的每座岛屿都只能由水平方向和/或竖直方向上相邻的陆地连接形成,也就是说斜角度的连接是不算数的,如图,这是三个岛屿:

那么思路就是遇到一个没有遍历过的节点陆地,就让计数器加一,然后把节点陆地所能遍历到的陆地全部标记上。如果遇到了标记过的陆地节点和海洋节点就直接跳过,这样计数器就是最终岛屿的数量,所以我们本题标记所有陆地节点能遍历到的陆地的方式就可以选择dfs和bfs了。
dfs代码示例:
const r1 = require('readline').createInterface({ input: process.stdin });
// 创建readline接口
let iter = r1[Symbol.asyncIterator]();
// 创建异步迭代器
const readline = async () => (await iter.next()).value;
let graph
let N, M
let visited
let result = 0
const dir = [[0, 1], [1, 0], [0, -1], [-1, 0]]
// 读取输入,初始化地图
const initGraph = async () => {
let line = await readline();
[N, M] = line.split(' ').map(Number);
graph = new Array(N).fill(0).map(() => new Array(M).fill(0))
visited = new Array(N).fill(false).map(() => new Array(M).fill(false))
for (let i = 0; i < N; i++) {
line = await readline()
line = line.split(' ').map(Number)
for (let j = 0; j < M; j++) {
graph[i][j] = line[j]
}
}
}
/**
* @description: 从节点x,y开始深度优先遍历
* @param {*} graph 是地图,也就是一个二维数组
* @param {*} visited 标记访问过的节点,不要重复访问
* @param {*} x 表示开始搜索节点的下标
* @param {*} y 表示开始搜索节点的下标
* @return {*}
*/
const dfs = (graph, visited, x, y) => {
for (let i = 0; i < 4; i++) {
const nextx = x + dir[i][0]
const nexty = y + dir[i][1]
if (nextx < 0 || nextx >= N || nexty < 0 || nexty >= M) continue
if (!visited[nextx][nexty] && graph[nextx][nexty] === 1) {
visited[nextx][nexty] = true
dfs(graph, visited, nextx, nexty)
}
}
}
(async function () {
// 读取输入,初始化地图
await initGraph()
// 统计岛屿数
for (let i = 0; i < N; i++) {
for (let j = 0; j < M; j++) {
if (!visited[i][j] && graph[i][j] === 1) {
// 标记已访问
visited[i][j] = true
// 遇到没访问过的陆地,+1
result++
// 深度优先遍历,将相邻陆地标记为已访问
dfs(graph, visited, i, j)
}
}
}
console.log(result);
})()
bfs有一个值得注意的点,只要是加入队列就代表走过了,就需要标记,而不是从队列拿出来的时候再去标记走过,如果从队列拿出结点再标记,就会出现以下情况,导致节点重复加入队列:

bfs代码示例:
const r1 = require('readline').createInterface({ input: process.stdin });
// 创建readline接口
let iter = r1[Symbol.asyncIterator]();
// 创建异步迭代器
const readline = async () => (await iter.next()).value;
let graph
let N, M
let visited
let result = 0
const dir = [[0, 1], [1, 0], [0, -1], [-1, 0]]
// 读取输入,初始化地图
const initGraph = async () => {
let line = await readline();
[N, M] = line.split(' ').map(Number);
graph = new Array(N).fill(0).map(() => new Array(M).fill(0))
visited = new Array(N).fill(false).map(() => new Array(M).fill(false))
for (let i = 0; i < N; i++) {
line = await readline()
line = line.split(' ').map(Number)
for (let j = 0; j < M; j++) {
graph[i][j] = line[j]
}
}
}
/**
* @description: 从(x, y)开始广度优先遍历
* @param {*} graph 地图
* @param {*} visited 访问过的节点
* @param {*} x 开始搜索节点的下标
* @param {*} y 开始搜索节点的下标
* @return {*}
*/
const bfs = (graph, visited, x, y) => {
let queue = []
queue.push([x, y])
visited[x][y] = true //只要加入队列就立刻标记为访问过
while (queue.length) {
let [x, y] = queue.shift()
for (let i = 0; i < 4; i++) {
let nextx = x + dir[i][0]
let nexty = y + dir[i][1]
if(nextx < 0 || nextx >= N || nexty < 0 || nexty >= M) continue
if(!visited[nextx][nexty] && graph[nextx][nexty] === 1){
queue.push([nextx, nexty])
visited[nextx][nexty] = true
}
}
}
}
(async function () {
// 读取输入,初始化地图
await initGraph()
// 统计岛屿数
for (let i = 0; i < N; i++) {
for (let j = 0; j < M; j++) {
if (!visited[i][j] && graph[i][j] === 1) {
// 遇到没访问过的陆地,+1
result++
// 广度优先遍历,将相邻陆地标记为已访问
bfs(graph, visited, i, j)
}
}
}
console.log(result);
})()
题目描述
给定一个由 1(陆地)和 0(水)组成的矩阵,计算岛屿的最大面积。岛屿面积的计算方式为组成岛屿的陆地的总数。岛屿由水平方向或垂直方向上相邻的陆地连接而成,并且四周都是水域。你可以假设矩阵外均被水包围。
输入描述
第一行包含两个整数 N, M,表示矩阵的行数和列数。后续 N 行,每行包含 M 个数字,数字为 1 或者 0,表示岛屿的单元格。
输出描述
输出一个整数,表示岛屿的最大面积。如果不存在岛屿,则输出 0。
输入示例
4 5
1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1
输出示例
4
提示信息

样例输入中,岛屿的最大面积为 4。
数据范围:
- 1 <= M, N <= 50。
思路:
本题还是dfs与bfs的基础类题目,就是去搜索每个岛屿上'1'的数量,然后取一个最大的
dfs:两种写法,要么dfs处理当前节点的相邻节点,即主函数遇到岛屿就计数为1,由dfs来处理接下来的相邻陆地。还有一种写法是dfs处理当前节点,即主函数遇到岛屿计数为0,dfs处理的是接下来全部的陆地
这里我是用解法一:
const r1 = require('readline').createInterface({ input: process.stdin });
// 创建readline接口
let iter = r1[Symbol.asyncIterator]();
// 创建异步迭代器
const readline = async () => (await iter.next()).value;
let graph // 地图
let N, M // 地图大小
let visited // 访问过的节点
let result = 0 // 最大岛屿面积
let count = 0 // 岛屿内节点数
const dir = [[0, 1], [1, 0], [0, -1], [-1, 0]] //方向
// 读取输入,初始化地图
const initGraph = async () => {
let line = await readline();
[N, M] = line.split(' ').map(Number);
graph = new Array(N).fill(0).map(() => new Array(M).fill(0))
visited = new Array(N).fill(false).map(() => new Array(M).fill(false))
for (let i = 0; i < N; i++) {
line = await readline()
line = line.split(' ').map(Number)
for (let j = 0; j < M; j++) {
graph[i][j] = line[j]
}
}
}
/**
* @description: 从(x, y)开始深度优先遍历
* @param {*} graph 地图
* @param {*} visited 访问过的节点
* @param {*} x 开始搜索节点的下标
* @param {*} y 开始搜索节点的下标
* @return {*}
*/
const dfs = (graph, visited, x, y) => {
for (let i = 0; i < 4; i++) {
let nextx = x + dir[i][0]
let nexty = y + dir[i][1]
if(nextx < 0 || nextx >= N || nexty < 0 || nexty >= M) continue
if(!visited[nextx][nexty] && graph[nextx][nexty] === 1){
count++
visited[nextx][nexty] = true
dfs(graph, visited, nextx, nexty)
}
}
}
(async function () {
// 读取输入,初始化地图
await initGraph()
// 统计最大岛屿面积
for (let i = 0; i < N; i++) {
for (let j = 0; j < M; j++) {
if (!visited[i][j] && graph[i][j] === 1) { //遇到没有访问过的陆地
// 重新计算面积
count = 1
visited[i][j] = true
// 深度优先遍历,统计岛屿内节点数,并将岛屿标记为已访问
dfs(graph, visited, i, j)
// 更新最大岛屿面积
result = Math.max(result, count)
}
}
}
console.log(result);
})()
bfs就直接一种写法:
const r1 = require('readline').createInterface({ input: process.stdin });
// 创建readline接口
let iter = r1[Symbol.asyncIterator]();
// 创建异步迭代器
const readline = async () => (await iter.next()).value;
let graph // 地图
let N, M // 地图大小
let visited // 访问过的节点
let result = 0 // 最大岛屿面积
let count = 0 // 岛屿内节点数
const dir = [[0, 1], [1, 0], [0, -1], [-1, 0]] //方向
// 读取输入,初始化地图
const initGraph = async () => {
let line = await readline();
[N, M] = line.split(' ').map(Number);
graph = new Array(N).fill(0).map(() => new Array(M).fill(0))
visited = new Array(N).fill(false).map(() => new Array(M).fill(false))
for (let i = 0; i < N; i++) {
line = await readline()
line = line.split(' ').map(Number)
for (let j = 0; j < M; j++) {
graph[i][j] = line[j]
}
}
}
/**
* @description: 从(x, y)开始广度优先遍历
* @param {*} graph 地图
* @param {*} visited 访问过的节点
* @param {*} x 开始搜索节点的下标
* @param {*} y 开始搜索节点的下标
* @return {*}
*/
const bfs = (graph, visited, x, y) => {
let queue = []
queue.push([x, y])
count++
visited[x][y] = true //只要加入队列就立刻标记为访问过
while (queue.length) {
let [xx, yy] = queue.shift()
for (let i = 0; i < 4; i++) {
let nextx = xx + dir[i][0]
let nexty = yy + dir[i][1]
if(nextx < 0 || nextx >= N || nexty < 0 || nexty >= M) continue
if(!visited[nextx][nexty] && graph[nextx][nexty] === 1){
queue.push([nextx, nexty])
count++
visited[nextx][nexty] = true
}
}
}
}
(async function () {
// 读取输入,初始化地图
await initGraph()
// 统计最大岛屿面积
for (let i = 0; i < N; i++) {
for (let j = 0; j < M; j++) {
if (!visited[i][j] && graph[i][j] === 1) { //遇到没有访问过的陆地
// 重新计算面积
count = 0
// 广度优先遍历,统计岛屿内节点数,并将岛屿标记为已访问
bfs(graph, visited, i, j)
// 更新最大岛屿面积
result = Math.max(result, count)
}
}
}
console.log(result);
})()
这些题都是思路比较简单,难点都在dfs和bfs的理论基础上