【Golang】LeetCode 1143. 最长公共子序列

1143. 最长公共子序列

题目描述

思路

这是一道非常经典的二维动态规划应用问题。我们都知道应该使用二维动态规划来解决这个问题,但是好像我没有仔细思考过为什么应该使用二维动态规划来解决这个问题,因此在此分析一下。

如果不使用动态规划,我们自然想到最坏的情况就是使用暴力枚举来解决这个问题,问题仍然在于不能够复用之前已经求过的公共子序列。因此我们定义一个二维数组dpdp[i][j]的含义就是text0...i的子串和text20...j的子串的最长公共子序列的长度。

显然,如果存在text1[i] == text2[j]的情况,则dp[i][j] = dp[i - 1][j -1] + 1,即如果当前两个串当中遍历到的字符是相等的,则0...i0...j子串的最长公共子序列的长度是0...i - 10...j - 1串的结果加上1;而如果text[1] != text2[j],则dp[i][j] = max(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]),意味着如果当前text1[1] != text[2],则不能增加0...i0...j子串的最长公共子序列的长度,该位置的最长公共子序列长度应该取可能的最大值。

基于以上思路,我们便可以写代码解决问题了。

Golang 代码

go 复制代码
func longestCommonSubsequence(text1 string, text2 string) int {
    m, n := len(text1), len(text2)
    dp := make([][]int, m + 1)
    for i := 0; i <= m; i ++ {
        dp[i] = make([]int, n + 1)
    }

    for i := 1; i <= m; i ++ {
        for j := 1; j <= n; j ++ {
            if text1[i - 1] == text2[j - 1] {
                dp[i][j] = dp[i - 1][j - 1] + 1
            } else {
                dp[i][j] = max(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1])
            }
        }
    }
    
    return dp[m][n]
}
相关推荐
Swift社区2 小时前
LeetCode 459 - 重复的子字符串
算法·leetcode·职场和发展
byzh_rc2 小时前
[算法设计与分析-从入门到入土] 图遍历
算法·深度优先
小李小李快乐不已2 小时前
动态规划理论基础
数据结构·c++·算法·leetcode·动态规划
leaves falling2 小时前
c语言数组-求10 个整数中最大值
c语言·c++·算法
im_AMBER2 小时前
数据结构 15 【复习】树和二叉树小结 | 图算法 | 拓扑排序 | AOE 网
数据结构·笔记·学习·算法·图论
太理摆烂哥2 小时前
数据结构之图
数据结构·算法
leaves falling2 小时前
c语言-数1到100的所有整数中数字9出行的个数
c语言·开发语言·算法
圣保罗的大教堂2 小时前
leetcode 1351. 统计有序矩阵中的负数 简单
leetcode
Tisfy2 小时前
LeetCode 1351.统计有序矩阵中的负数:O(m+n)时间复杂度——抽象题解
算法·leetcode·矩阵·题解·遍历