要模拟实现c++stl的list容器,首先得知道它是双向带头循环列表,就像下面这张图一样

老样子,由于迭代器部分的实现需要绕一下脑子,并且和之前vector的模拟实现中的迭代器设计方式不一样,因此我单独把迭代器部分的设计拿出来
由于正向迭代器和反向迭代器的++和--的方向不一致,因此单独设计出正向迭代器和反向迭代器
正向迭代器
cpp
template<class T, class Ref, class Ptr>
struct _list_iterator
{
typedef list_node<T> Node;
typedef _list_iterator<T, Ref, Ptr> self;
Node* _node;
_list_iterator(Node* node)
:_node(node)
{}
Ref operator*() const
{
return _node->_val;
}
self& operator++()
{
_node = _node->_next;
return *this;
}
self operator++(int x)
{
self tmp(*this);
_node = _node->_next;
return tmp;
}
self& operator--()
{
_node = _node->_prev;
return *this;
}
self operator--(int x)
{
self tmp(*this);
_node = _node->_prev;
return tmp;
}
bool operator==(const self& it) const
{
return _node == it._node;
}
bool operator!=(const self& it) const
{
return _node != it._node;
}
Ptr operator->() const
{
return &(operator*());
}
};
反向迭代器的设计
cpp
template<class Iterator, class Ref, class Ptr>
struct Reverse_Iterator
{
typedef Reverse_Iterator<Iterator, Ref, Ptr> self;
Iterator _it;
Reverse_Iterator(Iterator it)
:_it(it)
{}
Ref operator*() const
{
Iterator tmp = _it;
return *(--tmp);
}
Ptr operator->()
{
return &(operator*());
}
self& operator++()
{
--_it;
return *this;
}
self& operator--()
{
++_it;
return *this;
}
self operator++(int)
{
self tmp = *this;
--_it;
return tmp;
}
self operator--(int)
{
self tmp = *this;
++_it;
return tmp;
}
bool operator!=(const self& s) const
{
return _it != s._it;
}
};
其余部分
cpp
#pragma once
#include <iostream>
#include <assert.h>
using namespace std;
namespace wzn
{
template<class T>
struct list_node
{
list_node<T>* _next;
list_node<T>* _prev;
T _val;
list_node(const T& val = T())
:_next(nullptr)
,_prev(nullptr)
,_val(val)
{}
};
template<class T>
class list
{
typedef list_node<T> Node;
public:
//typedef _list_iterator<T> iterator;
//typedef _list_iterator<T> const_iterator;
typedef _list_iterator<T, T&, T*> iterator;
typedef _list_iterator<T, const T&, const T*> const_iterator;
typedef Reverse_Iterator<iterator, T&, T*> reverse_iterator;
typedef Reverse_Iterator<const_iterator, const T&, const T*> const_reverse_iterator;
void empyt_init()
{
_head = new Node;
_head->_next = _head;
_head->_prev = _head;
_size = 0;
}
list()
{
// 库里的是带头双向循环链表,因此必须有个看门狗节点
empyt_init();
}
list(const list<T>& lt)
{
empyt_init();
for (auto& e : lt)
{
push_back(e);
}
}
~list()
{
clear();
delete _head;
_head = nullptr;
}
void swap(list<T>& lt)
{
std::swap(_head, lt._head);
std::swap(_size, lt._size);
}
// 这里的形参是list<T> lt而不是const list<T> lt,因为调用swap的话,后者的内容是不能修改的
list<T>& operator=(list<T> lt)
{
swap(lt);
return *this;
}
void clear()
{
iterator it = begin();
while (it != end())
{
// erase会返回下一个节点的地址
it = erase(it);
}
_size = 0;
}
iterator begin()
{
//return iterator(_head->_next);
return _head->_next; //隐式类型转换 + 匿名对象
}
iterator end()
{
//return iterator(_head);
return _head;
}
const_iterator begin() const
{
//return iterator(_head->_next);
return _head->_next; //隐式类型转换 + 匿名对象
}
const_iterator end() const
{
//return iterator(_head);
return _head;
}
reverse_iterator rbegin()
{
return end();
}
reverse_iterator rend()
{
return begin();
}
const_reverse_iterator rbegin() const
{
return end();
}
const_reverse_iterator rend() const
{
return begin();
}
void push_back(const T& val)
{
//Node* tail = _head->_prev;
//Node* newnode = new Node(val);
//tail->_next = newnode;
//newnode->_prev = tail;
//
//newnode->_next = _head;
//_head->_prev = newnode;
insert(end(),val);
}
void push_front(const T& val)
{
insert(begin(), val);
}
void pop_back()
{
//Node* tail = _head->_prev;
//tail->_prev->_next = _head;
//_head->_prev = tail->_prev;
//delete[] tail;
//tail = nullptr;
erase(--end());
}
void pop_front()
{
erase(begin());
}
iterator insert(iterator pos, const T& val)
{
Node* newnode = new Node(val);
Node* cur = pos._node;
Node* prev = cur->_prev;
newnode->_prev = prev;
prev->_next = newnode;
newnode->_next = cur;
cur->_prev = newnode;
++_size;
return newnode;
}
iterator erase(iterator pos)
{
assert(pos != end());
Node* cur = pos._node;
Node* prev = cur->_prev;
Node* next = cur->_next;
prev->_next = next;
next->_prev = prev;
delete cur;
cur = nullptr;
--_size;
return next;
}
size_t size() const
{
return _size;
}
private:
Node* _head;
size_t _size = 0;
};
}