在 △ABC\triangle ABC△ABC 中, H1H_1H1 是 AAA 在 BCBCBC 边的投影, H1H_1H1 与 HHH 关于 BCBCBC 边的中点 MMM 对称, 分别过点 BBB 和点 CCC 的 (ABC)(ABC)(ABC) 的切线交于点 DDD, 过 H1H_1H1 作 DH1DH_1DH1 的垂线, 交直线 ABABAB 于点 FFF, 交直线 ACACAC 于点 GGG. 求证: ∠BDF=∠CDG\angle BDF=\angle CDG∠BDF=∠CDG. (2015, 伊朗数学奥林匹克国家队选拔赛)

证明:

设 DDD 到 ABABAB 和 ACACAC 的投影为 III, JJJ. 显然 FFF, III, DDD, H1H_1H1 共圆, GGG, JJJ, DDD, H1H_1H1 共圆.
BF/BD=sin∠BDFsin∠IFDBF/BD=\frac{\sin \angle BDF}{\sin \angle IFD}BF/BD=sin∠IFDsin∠BDF.
CG/CD=sin∠CDGsin∠JGDCG/CD=\frac{\sin \angle CDG}{\sin \angle JGD}CG/CD=sin∠JGDsin∠CDG.
BF/CG=sin∠BDFsin∠CDGsin∠JGDsin∠IFDBF/CG=\frac{\sin \angle BDF}{\sin \angle CDG}\frac{\sin \angle JGD}{\sin \angle IFD}BF/CG=sin∠CDGsin∠BDFsin∠IFDsin∠JGD.
只需证明: BF/CG=sin∠JGDsin∠IFD=JDGDFDIDBF/CG=\frac{\sin \angle JGD}{\sin \angle IFD}=\frac{JD}{GD}\frac{FD}{ID}BF/CG=sin∠IFDsin∠JGD=GDJDIDFD.
由梅涅劳斯定理, BF/CG=ABACFH1GH1BF/CG=\frac{AB}{AC} \frac {FH_1}{GH_1}BF/CG=ACABGH1FH1.
只需证明: ABACIDJDFH1FDGDGH1=1\frac{AB}{AC} \frac{ID}{JD} \frac{FH_1}{FD} \frac{GD}{GH_1} = 1ACABJDIDFDFH1GH1GD=1.
结合共圆可知其中 FH1FDGDGH1=sin∠FIH1sin∠GJH1\frac{FH_1}{FD} \frac{GD}{GH_1}=\frac{\sin \angle FIH_1}{\sin \angle GJH_1}FDFH1GH1GD=sin∠GJH1sin∠FIH1.
ABAC=sin∠ACBsin∠ABC\frac{AB}{AC} =\frac{\sin \angle ACB}{\sin \angle ABC}ACAB=sin∠ABCsin∠ACB.
ABACFH1FDGDGH1=sin∠FIH1sin∠ABC/sin∠GJH1sin∠ACB=BH1IH1/CH1JH1=CHBHJH1IH1=bcosCccosBJH1IH1\frac{AB}{AC} \frac{FH_1}{FD} \frac{GD}{GH_1} = \frac{\sin \angle FIH_1}{\sin \angle ABC} / \frac{\sin \angle GJH_1}{\sin \angle ACB} = \frac{BH_1}{IH_1} / \frac{CH_1}{JH_1} = \frac{CH}{BH} \frac{JH_1}{IH_1} = \frac{b \cos C}{c \cos B} \frac{JH_1}{IH_1}ACABFDFH1GH1GD=sin∠ABCsin∠FIH1/sin∠ACBsin∠GJH1=IH1BH1/JH1CH1=BHCHIH1JH1=ccosBbcosCIH1JH1.
BD=CDBD=CDBD=CD, ∠IBD=C\angle IBD=C∠IBD=C, ∠JCD=B\angle JCD=B∠JCD=B, 所以 IDJD=c/b\frac{ID}{JD} = c/bJDID=c/b.
所以只需证明: JH1IH1=cosBcosC\frac{JH_1}{IH_1} = \frac{\cos B}{\cos C}IH1JH1=cosCcosB.
sin∠CAM/sin∠BAM=c/b=ID/JD=sin∠DJI/sin∠DIJ\sin \angle CAM/\sin \angle BAM=c/b=ID/JD=\sin \angle DJI/\sin \angle DIJsin∠CAM/sin∠BAM=c/b=ID/JD=sin∠DJI/sin∠DIJ.
∠CAM+∠BAM=∠DJI+∠DIJ\angle CAM + \angle BAM = \angle DJI + \angle DIJ∠CAM+∠BAM=∠DJI+∠DIJ.
所以 ∠CAM=∠DJI\angle CAM = \angle DJI∠CAM=∠DJI, ∠BAM=∠DIJ\angle BAM = \angle DIJ∠BAM=∠DIJ.
进而 MMM 是 △AIJ\triangle AIJ△AIJ 的垂心.

设 △ABC\triangle ABC△ABC 的垂心为 H′H'H′. IM//BH′IM//BH'IM//BH′, JM//CH′JM//CH'JM//CH′.
下面证明: H1H_1H1, MMM, JJJ, III 共圆. 由此可知 JH1IH1=sin∠CMJsin∠BMI=sin∠H′CBsin∠H′BC=BH′CH′=cosBcosC\frac{JH_1}{IH_1} = \frac{\sin \angle CMJ}{\sin \angle BMI}= \frac{\sin \angle H'CB}{\sin \angle H'BC} = \frac{BH'}{CH'}= \frac{\cos B}{\cos C}IH1JH1=sin∠BMIsin∠CMJ=sin∠H′BCsin∠H′CB=CH′BH′=cosCcosB.
由三弦定理, 只需证明: H1Msin∠IMJ+MJsin∠H1MI=MIsin∠CMJH_1M \sin\angle IMJ + MJ \sin \angle H_1MI = MI \sin \angle CMJH1Msin∠IMJ+MJsin∠H1MI=MIsin∠CMJ.
H1M=HMH_1M = HMH1M=HM, sin∠IMJ=sinA\sin \angle IMJ= \sin Asin∠IMJ=sinA, sin∠H1MI=cosC\sin \angle H_1MI=\cos Csin∠H1MI=cosC, sin∠CMJ=cosB\sin \angle CMJ=\cos Bsin∠CMJ=cosB.
HMMAsinA=MIMAcosB−MJMAcosC\frac{HM}{MA} \sin A =\frac{MI}{MA}\cos B-\frac{MJ}{MA}\cos CMAHMsinA=MAMIcosB−MAMJcosC.
HMMA=sin∠MAH\frac{HM}{MA} = \sin \angle MAHMAHM=sin∠MAH.
MIMA=sin∠MABcosA\frac{MI}{MA}=\frac{\sin \angle MAB}{\cos A}MAMI=cosAsin∠MAB.
MIMA=sin∠MACcosA\frac{MI}{MA}=\frac{\sin \angle MAC}{\cos A}MAMI=cosAsin∠MAC.
即: sin∠MAHsin∠MACsinAcosA=sin∠MABsin∠MACcosB−cosC\frac{\sin \angle MAH}{\sin \angle MAC}\sin A \cos A = \frac{\sin \angle MAB}{\sin \angle MAC}\cos B-\cos Csin∠MACsin∠MAHsinAcosA=sin∠MACsin∠MABcosB−cosC.
先看左侧:
sin∠MAHsin∠MAC=MHMCACAH=a−2bcosCasinC=sinA−2sinBcosCsinAsinC=sin(C−B)sinAsinC\frac{\sin \angle MAH}{\sin \angle MAC} = \frac{MH}{MC}\frac{AC}{AH}=\frac{a-2b\cos C}{a \sin C}=\frac{\sin A-2\sin B\cos C}{\sin A \sin C} = \frac{\sin (C-B)}{\sin A\sin C}sin∠MACsin∠MAH=MCMHAHAC=asinCa−2bcosC=sinAsinCsinA−2sinBcosC=sinAsinCsin(C−B).
sin∠MAHsin∠MACsinAcosA=sin(C−B)cosAsinC=sin(2B)−sin(2C)2sinC\frac{\sin \angle MAH}{\sin \angle MAC}\sin A \cos A = \frac{\sin (C-B)\cos A}{\sin C} = \frac{\sin (2B)-\sin (2C)}{2\sin C}sin∠MACsin∠MAHsinAcosA=sinCsin(C−B)cosA=2sinCsin(2B)−sin(2C).
再看右侧:
sin∠MABsin∠MAC=sinBsinC\frac{\sin \angle MAB}{\sin \angle MAC}=\frac{\sin B}{\sin C}sin∠MACsin∠MAB=sinCsinB.
sin∠MABsin∠MACcosB−cosC=sinBcosB−sinCcosCsinC=sin(2B)−sin(2C)2sinC\frac{\sin \angle MAB}{\sin \angle MAC}\cos B-\cos C = \frac{\sin B\cos B-\sin C\cos C}{\sin C}=\frac{\sin (2B)-\sin (2C)}{2\sin C}sin∠MACsin∠MABcosB−cosC=sinCsinBcosB−sinCcosC=2sinCsin(2B)−sin(2C).
左右两侧相等.
所以 H1H_1H1, MMM, JJJ, III 共圆.
证毕.
完稿: 2026/01/08