对于整数,
是质因数,
是指数。
因数个数
因为每个质因数可以取 0 , 1 , 2 , ... ,
次幂,所以
因数和
对每个质因数,其幂次的几何级数和为:
总因数和为:
因数积
另一种计算方法:
对于每个质因数,在所有因数中出现的总次数:
总次数=
所以,
例题
题目描述
Given an integer, your task is to find the number, sum and product of its divisors. As an example, let us consider the number 12:
the number of divisors is 6 (they are 1, 2, 3, 4, 6, 12)
the sum of divisors is 1+2+3+4+6+12=28
the product of divisors is 1* 2* 3* 4* 6* 12 = 1728
Since the input number may be large, it is given as a prime factorization.
输入
The first line has an integer n: the number of parts in the prime factorization.
After this, there are n lines that describe the factorization. Each line has two numbers x and k where x is a prime and k is its power.
Constraints
1 ≤ n ≤
2 ≤ x ≤
each x is a distinct prime
1 ≤ k ≤
输出
Print three integers modulo : the number, sum and product of the divisors.
样例输入
cpp
2
2 2
3 1
样例输出
6 28 1728
代码
cpp
#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll fast_power(ll a,ll b,ll p){
if(a==0){
if(b==0)return 1;
else return 0;
}
ll ans=1;
while(b){
if(b&1){
ans=ans*a%p;
}
b>>=1;
a=a*a%p;
}
return ans;
}
const ll mod=1e9+7;
int main(){
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
ll n;
cin>>n;
vector<ll>x(n),k(n);
ll number=1,sum=1,product=1,number_phi=1;
for(ll i=0;i<n;i++){
cin>>x[i]>>k[i];
number=number*(k[i]+1)%mod;
number_phi=number_phi*(k[i]+1)%((mod-1)*2);
ll inv=fast_power(x[i]-1,mod-2,mod);
ll tmp=(fast_power(x[i],k[i]+1,mod)-1+mod)%mod;
tmp=tmp*inv%mod;//分步计算,防止中间值溢出
sum=sum*tmp%mod;
}
for(int i=0;i<n;i++){
ll k_phi=k[i]%(2*(mod-1));
ll exp=k_phi*number_phi%(2*(mod-1));
exp/=2;
exp%=(mod-1);
product=product*fast_power(x[i],exp,mod)%mod;
}
cout<<number<<" "<<sum<<" "<<product;
return 0;
}
如果整数没有以质因数分解的形式给出,而仅仅是一个整数n,要求计算n的因数个数。
可以参考下面这道题的做法。
Euler~高度可约的三角形数
题目描述
三角形数数列是通过逐个加上自然数来生成的。例如,第7个三角形数是 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28。三角形数数列的前十项分别是:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
让我们列举出前七个三角形数的所有约数:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
我们可以看出,28是第一个拥有超过5个约数的三角形数。
第一个拥有超过n个约数的三角形数是多少?
输入
一行,一个整数n(n≤1000)
输出
第一个拥有超过n个约数的三角形数
样例输入
5
样例输出
28
代码
cpp
#include<bits/stdc++.h>
#define ll long long
using namespace std;
vector<ll>prime;
void greate_prime(ll limit){
vector<int>is_prime(limit+1,true);
is_prime[0]=is_prime[1]=false;
for(ll i=2;i<=limit;i++){
if(!is_prime[i])continue;
prime.push_back(i);
for(ll j=i*i;j<=limit;j+=i){
is_prime[j]=false;
}
}
}
ll count_divisors(ll n){
if(n==1)return 1;
ll ans=1;
for(ll p:prime){
if(p*p>n)break;
int cnt=0;
while(n%p==0){
cnt++;
n/=p;
}
if(cnt>0){
ans*=(cnt+1);
}
}
if(n>1){
ans*=2;
}
return ans;
}
int main(){
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
ll n;
cin>>n;
greate_prime(2e5);
ll k=1;
while(1){
ll tri,divs;
if(k&1){
ll a=(k+1)/2;
ll b=k;
tri=a*b;
divs=count_divisors(a)*count_divisors(b);
}
else{
ll a=k+1;
ll b=k/2;
tri=a*b;
divs=count_divisors(a)*count_divisors(b);
}
if(divs>n){
cout<<tri;
break;
}
k++;
}
return 0;
}