图论理论基础
文章讲解:图论理论基础 | 代码随想录
视频讲解:如果学不会图论,是因为你没掌握基础!图论算法基础篇来咯!_哔哩哔哩_bilibili
大家可以在看图论理论基础的时候,很多内容 看不懂,例如也不知道 看完之后 还是不知道 邻接矩阵,邻接表怎么用, 别着急。
理论基础大家先对各个概念有个印象就好,后面在刷题的过程中,每个知识点都会得到巩固。
深搜理论基础
文章讲解:深度优先搜索理论基础 | 代码随想录
视频讲解:妈妈再也不在担心我的图论!!深度优先搜索理论基础来咯! 深搜理论基础篇_哔哩哔哩_bilibili
了解一下深搜的原理和过程
98. 所有可达路径
题目链接:98. 可达路径
文章讲解:98. 所有可达路径 | 代码随想录
视频讲解:图论,深度优先搜索基础题,深搜详解 | 卡码网:98. 所有可达路径_哔哩哔哩_bilibili
重点在图的存储,深搜流程以及打印图三个部分,要弄清楚这三个部分是如何写的。
一、图的存储
在图论理论基础篇 中我们讲到了 两种 图的存储方式:邻接表 和 邻接矩阵。
本题我们将带大家分别实现这两个图的存储方式。
1.邻接矩阵
邻接矩阵 使用 二维数组来表示图结构。 邻接矩阵是从节点的角度来表示图,有多少节点就申请多大的二维数组。
本题我们会有n 个节点,因为节点标号是从1开始的,为了节点标号和下标对齐,我们申请 n + 1 * n + 1 这么大的二维数组。
cpp
vector<vector<int>> graph(n + 1, vector<int>(n + 1, 0));
输入m个边,构造方式如下:
cpp
while (m--) {
cin >> s >> t;
// 使用邻接矩阵 ,1 表示 节点s 指向 节点t
graph[s][t] = 1;
}
2.邻接表
邻接表 使用 数组 + 链表的方式来表示。 邻接表是从边的数量来表示图,有多少边 才会申请对应大小的链表。
邻接表的构造相对邻接矩阵难理解一些。
我在 图论理论基础篇 举了一个例子:

这里表达的图是:
- 节点1 指向 节点3 和 节点5
- 节点2 指向 节点4、节点3、节点5
- 节点3 指向 节点4
- 节点4指向节点1
我们需要构造一个数组,数组里的元素是一个链表。
C++写法:
cpp
// 节点编号从1到n,所以申请 n+1 这么大的数组
vector<list<int>> graph(n + 1); // 邻接表,list为C++里的链表
输入m个边,构造方式如下:
cpp
while (m--) {
cin >> s >> t;
// 使用邻接表 ,表示 s -> t 是相连的
graph[s].push_back(t);
}
本题我们使用邻接表 或者 邻接矩阵都可以,因为后台数据并没有对图的大小以及稠密度做很大的区分。
以下我们使用邻接矩阵的方式来讲解,文末我也会给出 使用邻接表的整体代码。
注意邻接表 和 邻接矩阵的写法都要掌握!
二、深度优先搜索
本题是深度优先搜索的基础题目,关于深搜我在图论深搜理论基础 已经有详细的讲解,图文并茂。
关于本题我会直接使用深搜三部曲来分析,如果对深搜不够了解,建议先看 图论深搜理论基础。
深搜三部曲来分析题目:
1.确认递归函数,参数
首先我们dfs函数一定要存一个图,用来遍历的,需要存一个目前我们遍历的节点,定义为x。
还需要存一个n,表示终点,我们遍历的时候,用来判断当 x==n 时候 标明找到了终点。
(其实在递归函数的参数 不容易一开始就确定了,一般是在写函数体的时候发现缺什么,参加就补什么)
至于 单一路径 和 路径集合 可以放在全局变量,那么代码是这样的:
cpp
vector<vector<int>> result; // 收集符合条件的路径
vector<int> path; // 0节点到终点的路径
// x:目前遍历的节点
// graph:存当前的图
// n:终点
void dfs (const vector<vector<int>>& graph, int x, int n) {
2.确认终止条件
什么时候我们就找到一条路径了?
当目前遍历的节点 为 最后一个节点 n 的时候 就找到了一条 从出发点到终止点的路径。
cpp
// 当前遍历的节点x 到达节点n
if (x == n) { // 找到符合条件的一条路径
result.push_back(path);
return;
}
3.处理目前搜索节点出发的路径
接下来是走 当前遍历节点x的下一个节点。
首先是要找到 x节点指向了哪些节点呢? 遍历方式是这样的:
cpp
for (int i = 1; i <= n; i++) { // 遍历节点x链接的所有节点
if (graph[x][i] == 1) { // 找到 x指向的节点,就是节点i
}
}
接下来就是将 选中的x所指向的节点,加入到 单一路径来。
cpp
path.push_back(i); // 遍历到的节点加入到路径中来
进入下一层递归
cpp
dfs(graph, i, n); // 进入下一层递归
最后就是回溯的过程,撤销本次添加节点的操作。
为什么要有回溯,我在图论深搜理论基础 也有详细的讲解。
该过程整体代码:
cpp
for (int i = 1; i <= n; i++) { // 遍历节点x链接的所有节点
if (graph[x][i] == 1) { // 找到 x链接的节点
path.push_back(i); // 遍历到的节点加入到路径中来
dfs(graph, i, n); // 进入下一层递归
path.pop_back(); // 回溯,撤销本节点
}
}
三、打印结果
ACM格式大家在输出结果的时候,要关注看看格式问题,特别是字符串,有的题目说的是每个元素后面都有空格,有的题目说的是 每个元素间有空格,最后一个元素没有空格。
有的题目呢,压根没说,那只能提交去试一试了。
很多录友在提交题目的时候发现结果一样,为什么提交就是不对呢。
例如示例输出是:
1 3 5 而不是 1 3 5
即 5 的后面没有空格!
这是我们在输出的时候需要注意的点。
有录友可能会想,ACM格式就是麻烦,有空格没有空格有什么影响,结果对了不就行了?
ACM模式相对于核心代码模式(力扣) 更考验大家对代码的掌控能力。 例如工程代码里,输入输出都是要自己控制的。这也是为什么大公司笔试,都是ACM模式。
以上代码中,结果都存在了 result数组里(二维数组,每一行是一个结果),最后将其打印出来。(重点看注释)
cpp
// 输出结果
if (result.size() == 0) cout << -1 << endl;
for (const vector<int> &pa : result) {
for (int i = 0; i < pa.size() - 1; i++) { // 这里指打印到倒数第二个
cout << pa[i] << " ";
}
cout << pa[pa.size() - 1] << endl; // 这里再打印倒数第一个,控制最后一个元素后面没有空格
}
四、本题代码
1.邻接矩阵写法
cpp
#include <iostream>
#include <vector>
using namespace std;
vector<vector<int>> result; // 收集符合条件的路径
vector<int> path; // 1节点到终点的路径
void dfs (const vector<vector<int>>& graph, int x, int n) {
// 当前遍历的节点x 到达节点n
if (x == n) { // 找到符合条件的一条路径
result.push_back(path);
return;
}
for (int i = 1; i <= n; i++) { // 遍历节点x链接的所有节点
if (graph[x][i] == 1) { // 找到 x链接的节点
path.push_back(i); // 遍历到的节点加入到路径中来
dfs(graph, i, n); // 进入下一层递归
path.pop_back(); // 回溯,撤销本节点
}
}
}
int main() {
int n, m, s, t;
cin >> n >> m;
// 节点编号从1到n,所以申请 n+1 这么大的数组
vector<vector<int>> graph(n + 1, vector<int>(n + 1, 0));
while (m--) {
cin >> s >> t;
// 使用邻接矩阵 表示无线图,1 表示 s 与 t 是相连的
graph[s][t] = 1;
}
path.push_back(1); // 无论什么路径已经是从0节点出发
dfs(graph, 1, n); // 开始遍历
// 输出结果
if (result.size() == 0) cout << -1 << endl;
for (const vector<int> &pa : result) {
for (int i = 0; i < pa.size() - 1; i++) {
cout << pa[i] << " ";
}
cout << pa[pa.size() - 1] << endl;
}
}
2.邻接表写法
cpp
#include <iostream>
#include <vector>
#include <list>
using namespace std;
vector<vector<int>> result; // 收集符合条件的路径
vector<int> path; // 1节点到终点的路径
void dfs (const vector<list<int>>& graph, int x, int n) {
if (x == n) { // 找到符合条件的一条路径
result.push_back(path);
return;
}
for (int i : graph[x]) { // 找到 x指向的节点
path.push_back(i); // 遍历到的节点加入到路径中来
dfs(graph, i, n); // 进入下一层递归
path.pop_back(); // 回溯,撤销本节点
}
}
int main() {
int n, m, s, t;
cin >> n >> m;
// 节点编号从1到n,所以申请 n+1 这么大的数组
vector<list<int>> graph(n + 1); // 邻接表
while (m--) {
cin >> s >> t;
// 使用邻接表 ,表示 s -> t 是相连的
graph[s].push_back(t);
}
path.push_back(1); // 无论什么路径已经是从0节点出发
dfs(graph, 1, n); // 开始遍历
// 输出结果
if (result.size() == 0) cout << -1 << endl;
for (const vector<int> &pa : result) {
for (int i = 0; i < pa.size() - 1; i++) {
cout << pa[i] << " ";
}
cout << pa[pa.size() - 1] << endl;
}
}
五、总结
本题是一道简单的深搜题目,也可以说是模板题,和 力扣797. 所有可能的路径 (opens new window)思路是一样一样的。
很多录友做力扣的时候,轻松就把代码写出来了, 但做面试笔试的时候,遇到这样的题就写不出来了。
在力扣上刷题不用考虑图的存储方式,也不用考虑输出的格式。
而这些都是 ACM 模式题目的知识点(图的存储方式)和细节(输出的格式)
所以我才会特别制作ACM题目,同样也重点去讲解图的存储和遍历方式,来帮大家去练习。
对于这种有向图路径问题,最合适使用深搜,当然本题也可以使用广搜,但广搜相对来说就麻烦了一些,需要记录一下路径。
而深搜和广搜都适合解决颜色类的问题,例如岛屿系列,其实都是 遍历+标记,所以使用哪种遍历都是可以的。
至于广搜理论基础,我们在下一篇在好好讲解,敬请期待!
LeetCode深搜理论基础
文章讲解:广度优先搜索理论基础 | 代码随想录
视频讲解:图论:广度优先搜索理论基础! | 广搜理论基础_哔哩哔哩_bilibili
这几章都是基础,大家好好看一下就行,后面有题了都会复习到的,不用着急,现在肯定会有不懂的