基于Ollama大模型学习

一、Windows安装Ollama

1、下载Ollama

官网下载: https://ollama.com/downloadhttps://ollama.com/download 网盘下载:

通过百度网盘分享的文件:OllamaSe...

链接:https://pan.baidu.com/s/1DX-xHwQOPiiHodbcWnWxzg?pwd=r4h7

复制这段内容打开「百度网盘APP 即可获取」

OllamaSetup.exe https://www.alipan.com/s/H5P2dTwSFTb 点击链接保存,或者复制本段内容,打开「阿里云盘」APP ,无需下载极速在线查看,视频原画倍速播放。

2、Windows安装Ollama

指定安装路径:OllamaSetup.exe /DIR="D:\Ollama"

(1)双击OllamaSetup.exe

直接下一步到安装结束

(2)安装验证

进入CDM,ollama -v

(3)环境变量

(4)模型下载安装

官方模型库:https://ollama.com/https://ollama.com/

复制代码
   ollama pull deepseek-r1:1.5b

(5)运行模型

复制代码
ollama run deepseek-r1:1.5b

ollama ps

(6)ollama命令说明

  • 模型运行与交互
    • ollama generate <model-name> -p "<prompt>":生成模型响应,适用于脚本化调用。 ‌

    • ollama run <model-name>:运行指定的模型。如果模型在本地不存在,会自动从远程仓库拉取。执行后进入交互模式,用户可以直接与模型对话。 ‌

    • 模型管理

      • ollama pull <model-name>:从远程仓库下载模型到本地,但不运行。
      • ollama listollama ls:列出本地已下载的所有模型。 ‌
      • ollama rm <model-name>:删除本地指定的模型,释放磁盘空间。 ‌
      • ollama cp <source-model> <destination-model>:复制一个现有模型为新的名称,常用于测试或创建变体。 ‌
      • ollama show <model-name>:显示模型的详细信息,如元数据、参数或 Modelfile 内容。 ‌
    • 模型创建与自定义

      • ollama create <model-name> -f <modelfile>:根据 Modelfile 中的配置创建自定义模型。Modelfile 可以指定基础模型、系统提示、参数和模板等。 ‌
      • ollama push <model-name>:将自定义模型推送到远程仓库(如 ollama.com)。 ‌
    • 服务与进程管理

      • ollama serve:启动 Ollama 的本地 API 服务(默认端口 11434),允许通过 HTTP 请求访问模型。 ‌
      • ollama ps:列出当前正在运行的模型及其资源占用情况(如显存)。 ‌
      • ollama stop:停止正在运行的模型或服务。 ‌
    • 辅助命令

      • ollama --help:显示所有可用命令的帮助信息。 ‌
      • ollama --version:显示 Ollama 的当前版本。

(7)代码初验

A.API访问模型接口静态返回

i:ollama成功运行后,会提供一个REST API接口地址,默认运行在11434端口,http://localhost:11434/api/generate,调用方式参考如下:

python 复制代码
import requests
# 调用ollama,指定模型和本地部署后api地址
def query_ollama(prompt, model="deepseek-r1:1.5b"):
    url = "http://localhost:11434/api/generate"
    data = {
        "model": model,
        "prompt": prompt,
        "stream": False  
    }
    response = requests.post(url, json=data)
    if response.status_code == 200:
        return response.json()["response"]
    else:
        raise Exception(f"API 请求失败: {response.text}")
# 使用示例
response = query_ollama("你好,你是什么大模型,请浓重介绍一下自己!")
print(response)

运行结果:

复制代码
<think>
您好!我是由中国的深度求索(DeepSeek)公司开发的智能助手DeepSeek-R1。如您有任何任何问题,我会尽我所能为您提供帮助。
</think>
您好!我是由中国的深度求索(DeepSeek)公司开发的智能助手DeepSeek-R1。如您有任何任何问题,我会尽我所能为您提供帮助。

A.API访问模型接口思考模式的逐字输出

ii:调整为带有思考模式的逐字输出:

python 复制代码
import requests
# 流模式输出结果内容
def query_ollama(prompt, model="deepseek-r1:1.5b", stream=False):
    url = "http://localhost:11434/api/generate"
    data = {
        "model": model,
        "prompt": prompt,
        "stream": stream  
    }
    if stream:
        # 开始处理流式响应结果
        with requests.post(url, json=data, stream=True) as response:
            if response.status_code == 200:
                # 逐行打印结果内容
                for line in response.iter_lines(decode_unicode=True):
                    if line:
                        # Ollama流式返回每行是一个json字符串
                        try:
                            import json
                            obj = json.loads(line)
                            print(obj.get("response", ""), end="", flush=True)
                        except Exception as e:
                            print(f"解析流式响应出错: {e}")
            else:
                raise Exception(f"API 请求失败: {response.text}")
    else:
        response = requests.post(url, json=data)
        if response.status_code == 200:
            return response.json()["response"]
        else:
            raise Exception(f"API 请求失败: {response.text}")
# 使用示例
print("流式响应结果输出:")
query_ollama("写一篇短片叙事小说", stream=True)

<think>

好,用户让我写一个短片的叙事故事。首先,我得想想看这是一个什么样的题材。用户可能希望有一个有趣、有创意的故事,能够吸引观众的注意。

考虑到现代科技和日常生活中的小插曲,我想到了"小猫"这个主题。因为宠物这个东西现在越来越普遍了,而且和科技结合可以有很多有趣的场景。

接下来,我需要设计一个故事的开头部分。也许先是在咖啡厅里遇到一只小猫,这样能自然地引出故事情节,同时设置一些悬疑元素。

然后是人物设定。主角李明是个文艺青年,喜欢在咖啡厅里散步和看新闻。他遇到了一只浑身湿透的小猫,这个细节可以让故事更有层次感,也能引发读者的兴趣。

接下来需要一个转折点。小猫突然消失,李明开始怀疑自己和小猫的关系。这里要让他的内心活动变得生动起来,可能让他意识到自己的疏忽和对小猫的依赖。

然后是更多的情节发展。李明发现小猫的残骸,这个细节可以增加故事的真实感和紧张感。同时,他试图联系邻居,但对方可能也在寻找某种线索,这为后续的发展埋下伏笔。

最后,结局应该是开放式的,让读者有继续观看的兴趣点。也许小猫在深夜消失,留下一个未解之谜,或者李明找到新的目标,继续他的冒险。

整体来看,这个故事结构清晰,情节紧凑,能够吸引观众的注意力,并引发他们的好奇心。通过主角的经历和周围的环境描写,营造出一种温馨而紧张的氛围,让读者感受到一种独特的情感体验。

</think>

《小猫》

咖啡厅的光亮如水,映着sausage盒里的蒸汽。李明推开玻璃门,脚步轻得像是在水里,却还是踩出了几声响。

"小猫!"

一声尖锐的猫叫从身后传来。李明抬头望去,一只浑身湿透的黑白狗正蜷缩在角落里。它的眼睛亮得惊人,像是被什么东西照得通明一般。

"这可是我今天第一次遇见这么丑的小东西了!"他低声低语着,转身就要走。但等他走到门后,却发现小猫已经消失了。那条狗浑身湿透的毛发都湿了一地,看起来就像被水浸泡过一般。

李明的心猛地揪了一下。这不可能是他错看了吧?他站起身,想要追上去,却发现自己的手心已经冒出了冷汗。

"别怕!"

一个温和的声音在身后响起。是李明的老邻居王伯伯,他正在后院的养了一只小猫的小狗。"那只是普通的流浪猫。"他说着,又把注意力转向了咖啡厅里的事情------这是一间空荡荡的咖啡厅,李明在看新闻时碰巧遇见一只浑身湿透的小猫。

"那是在外面打喷嚏。"李明低下头看着窗外,"这是谁打碎了咖啡杯?"

王伯伯的眼眶一红:"小明!"

"您确定是这个吗?"王伯伯试探着开口,声音却有些发抖。他低头看了看手中的报纸:"这可是报纸上写的,还有个大字'猫'。

"这是什么情况?"李明盯着报纸看了会儿,终于忍不住问道。

"我们来查一下吧。"王伯伯突然开口,"昨天早上五点,我从后院回来的时候,看到一只浑身湿透的小狗正蜷缩在角落里。那条狗的毛发都被弄脏了,还在试着打喷嚏。等我看到它走开时,它已经消失得无影无踪了。

'这是谁打碎了咖啡杯?'李明又问道。

王伯伯的眼神变得阴沉:"哦,原来这就是我们经常一起吃饭的地方!"

"可是......"李明打断他的话,"为什么这回不一样?"

"那是在外面打喷嚏。"王伯伯看着报纸又看了一遍,"我记得我今天晚上要去看一个电影,而这个咖啡厅在下午五点准时开张,所以......"

"不对劲。"李明叹了口气,"我记得我看到的是报纸上写的'猫'字。

'等等等,'李明低声提醒自己,"我要先看看那条狗了。"

他转身看向王伯伯,但王伯伯已经走远了。远处的玻璃窗上落满了水珠,像是被蒸腾的水雾蒙住了视线。李明低头看着手中的报纸,窗外的咖啡厅 already closed了。

"这......这是不是小猫打喷嚏?"他轻声问自己。

C.Embedding模型

python 复制代码
import requests
# 调用ollama,指定模型和本地部署后api地址
def query_ollama(str, model="bge-large:latest"):
    url = "http://localhost:11434/api/embed"
    data = {
        "model": model,
        "input": str
    }
    response = requests.post(url, json=data)
    print(response)
    if response.status_code == 200:
        return response.json()
    else:
        raise Exception(f"API 请求失败: {response.text}")


result = query_ollama("embedding 这段文字")
print(result)

{'model': 'bge-large:latest', 'embeddings': [[0.008435746, 0.0015364852, 0.027534544, -0.02953808, 0.015688501, -0.005604921, -0.016354457, 0.01068374, 0.010149711, 0.03709544, 0.034041874, 0.015752727, 0.019330101, -0.029563786, -0.0055092056, -0.036613055, 0.003101264, -0.051842403, -0.020560673, -0.010521262, -0.016305132, 0.020685352, -0.08572588, -0.007446836, -0.0092861345, 0.0034349035, 0.040050518, 0.03464385, 0.07529341, 0.025858248, 0.019508285, 0.029326634, 0.021283392, -0.04142262, -0.008292634, -0.03447451, 0.01375169, -0.0005429376, -0.0037046275, -0.044064783, 0.0099781025, -0.011165775, 0.04654691, -0.045332406, -0.0599962, -0.015124728, 0.06333907, 0.027390623, 0.007840544, -0.045630157, 0.0015085057, 0.02191393, -0.019028919, -0.01648561, 0.0019163147, 0.019370917, -0.00036536294, -0.023863379, -0.012167727, 0.038640946, 0.033430323, -0.024382867, 0.061000697, -0.044662755, 0.016127663, 0.014807276, -0.021974115, -0.004096442, 0.012348739, 0.00060519075, -0.019521043, -0.01309298, -0.02329516, -0.0040968545, -0.017777441, 0.009988942, -0.02133584, 0.023300914, -0.012134839, 0.039290003, -0.00955243, 0.048324443, 0.011509868, 0.009703157, -0.025487512, -0.061003026, 0.016351156, -0.016137373, 0.013163696, -0.013110474, -0.033132512, 0.049549792, -0.0103408415, 0.030078828, -0.012138888, 0.03741099, -0.01650353, 0.02184594, -0.0047821263, 0.009281081, 0.03739348, 0.071703576, 0.019169468, 0.047699973, -0.038864214, 0.002773752, -0.0048543294, -0.008975727, -0.037084673, -0.011325997, 0.02251501, -0.015418058, 0.010342437, 0.004030486, -0.03345904, 0.01719087, 0.019475712, 0.019176051, -0.009712272, -0.00446772, -0.0048817475, -0.0061825733, 0.014060947, -0.0429288, 0.00077198865, -0.035253488, -0.006447929, 0.04656488, 0.0031803465, -0.015904328, 0.024064738, 0.0025432645, 0.017457988, 0.006455737, -0.04733596, 0.010421117, -0.030437876, 0.013290668, 0.035409518, -0.021189507, 0.031077024, -0.01305365, -0.019321248, 0.067720294, -0.036873315, 0.032774746, 0.003310837, -0.054897755, -0.048518512, 0.04199163, 0.021787792, -0.014449599, -0.0021915883, -0.007726218, -0.047056135, 0.009609334, -0.020323247, -0.0081314165, 0.03770932, 0.037886124, 0.0024754594, 0.014804224, -0.033093736, 0.063905455, -0.0068311878, 0.075284034, -0.050381284, -0.027811665, -0.012752094, -0.032791145, -0.0036735008, 0.0040953094, 0.01766338, -0.009789068, 0.01979687, 0.03277062, 0.018360436, -0.0022955425, 0.075242005, 0.019134033, -0.010731399, -0.012559832, 0.034525733, 0.0214449, -0.03303887, 0.01598054, -0.021364503, -0.016918583, -0.0227174, -0.0016602775, 0.013915213, 0.051141173, -0.019910429, 0.03602077, -0.035710987, 0.012659527, -0.04877281, -0.012364229, -0.033414256, -0.0730149, -0.04848668, 0.034819104, -0.018101623, -0.015841259, -0.03392691, 0.0034396222, 0.041376162, 0.08488412, -0.028964996, 0.015843537, 0.033018805, 0.008209604, 0.0074062627, -0.032345083, 0.044189405, -0.0061094738, -0.021559656, 0.053377997, -0.025330123, 0.010055661, 0.017288454, 0.04203873, 0.0014841537, 0.0041133873, -0.0012083611, 0.01194813, -0.003906914, 0.049158756, 0.0008027708, 0.0073593264, -0.0018957927, 0.017367208, 0.017978566, 0.018665187, 0.043337755, 0.07529951, 0.043316543, 0.03153429, 0.013806213, 0.043757208, 0.0036663746, 0.006596596, 0.044389475, 0.00792521, -2.1686463e-05, -0.015143967, 0.0036841608, 0.047351867, -0.026263796, 0.0029564395, -0.013165874, 0.0061168885, 0.023425153, 0.052398898, -0.009089643, 0.012371888, 0.018338509, 0.055143688, -0.04761543, -0.0051734853, -0.02449392, 0.037947137, -0.029637389, -0.013289341, 0.023545269, -0.0037600843, -0.0066210437, 0.011695323, -0.015816499, -0.018558985, -0.0506867, -0.05184641, -0.073166676, 0.0038314713, -0.048989326, -0.024912134, 0.056606714, -0.019521086, -0.009575208, -0.0064837714, 0.017156374, -0.016085232, -0.03716073, -0.019570457, 0.031088835, 0.015896477, -0.07226551, 0.063398495, -0.011332825, 0.047474973, -0.034510765, -0.019421808, 0.0024488755, 0.008474001, 0.00068293174, -0.02769983, -0.020256424, -0.02838138, -0.010403161, -0.052208256, 0.014591237, -0.025016276, -0.009732942, 0.031083215, -0.050616577, 0.039113782, 0.017173383, -0.007479932, 0.010855233, 0.04333048, -0.040342852, 0.040472507, 0.020346534, 0.037105795, -0.033095576, 0.07912093, 0.050616633, 0.009069913, -0.019344948, -0.024394743, -0.012041333, -0.0045093982, 0.0060240733, -0.050804496, -0.026506959, 0.023675138, 0.06251582, -0.051313557, 0.006321797, -0.030640442, -0.04895956, -0.031533007, -0.030821482, 0.01806289, 0.009470944, 0.02220965, -0.06286741, 0.0053991377, 0.037450705, 0.017825035, 0.021736072, -0.022260463, 0.04422495, 0.010237274, 0.019634843, 0.0196224, 0.0072263572, -0.031992223, 0.01123558, 0.034074984, 0.007914612, -0.0166407, 0.043557808, 0.005501179, -0.051540263, 0.0118235545, -0.044770014, 0.032278914, 0.021209976, -0.012710458, 0.047860492, 0.017892297, 0.03016497, -0.05587976, 0.00047466852, -0.040588234, 0.005387602, -0.0047492287, 0.04587642, -0.065517046, 0.043891124, -0.020142116, -0.025147716, 0.053571757, -0.012241791, -0.020158544, 0.039854195, 0.011647408, 0.0341373, -0.072664015, -0.048059516, 0.029121006, 0.03164338, 0.030486936, 0.015424739, 0.047525227, 0.015790457, -0.024855385, -0.021147788, -0.038402945, -0.016735721, 0.021481987, -0.02549594, -0.00408647, -0.0452273, -0.016057963, 0.020359427, 0.038803436, 0.025622658, -0.025048252, 0.0143692875, 0.025254207, 0.027364183, 0.011289761, 0.0055944608, -0.016345998, -0.0014204427, 0.058058213, 0.02124922, 0.0037347772, -0.020658057, -0.0046164254, -0.022586254, 0.029490598, -0.010739423, 0.047820147, -0.0163617, -0.005863686, 0.020134134, 0.00962708, -0.019074433, -0.005439747, -0.04357598, 0.03829356, 0.06819825, -0.060558002, -0.0190253, 0.0021644686, 0.030704394, 0.0019863634, -0.01232729, -0.05067204, -0.027111538, -0.014725378, -0.0448897, 0.048325323, -0.011212885, 0.019497711, 0.016543208, -0.04971265, 0.028532295, -0.007570535, -0.0017832497, 0.04876056, -0.022623632, -0.00393215, 0.021412391, 0.055275902, -0.0115407305, -0.07201894, 0.0049491986, -0.028466733, 0.031094886, -0.006982191, -0.033628635, -0.0132112615, 0.025030168, -0.003998909, 0.0007990572, -0.006628473, -0.03138461, -0.0010551852, 0.007834654, -0.008241832, -0.046179578, 0.0307225, 0.0009252381, -0.035416327, 0.0020312231, 0.010755881, -0.0026306713, -0.0076239663, 0.031857304, -0.036016714, 0.04414951, -0.04355872, -0.008338318, -0.033338666, -0.0015655295, 0.010444597, -0.027312595, 0.049953546, -0.0033418061, 0.008798827, -0.014581116, -0.030196002, -0.038153835, -0.027553242, -0.02247164, -0.005358083, 0.017208494, -0.011962584, 0.02346385, -0.03452978, -0.0025483228, 0.0015534803, -0.038389523, -0.007894173, 0.046715457, 0.013232535, 0.038198106, -0.024444992, -0.054600358, 0.005936955, -0.017409503, 0.02132752, -0.03295184, -0.013175704, 0.0008594477, 0.004914039, -0.030435108, -0.013823163, -0.026332803, 0.020329254, -0.007060039, 0.030918758, -0.031703904, -0.03671724, -0.0141466055, 0.028968055, 0.009366856, -0.06970949, -0.05192446, 0.024489563, -0.034569204, 0.021146063, 0.059293374, 0.0071481373, -0.043072574, -0.066272594, 0.027084801, -0.03535532, -0.034417517, -0.04639304, -0.016201818, -0.008674423, 0.025035262, 0.05243159, -0.04542002, -0.036012, -0.06517346, -0.0026647504, -0.035096075, -0.011833734, -0.059461717, -0.0024102882, 0.0064940304, 0.08674478, -0.038384005, -0.009714255, -0.004598784, 0.028019514, 0.028362937, 0.042640906, 0.002776219, -0.026727187, 0.017398458, -0.03876897, 0.0061628977, 0.006292498, -0.062536776, 0.017831603, -0.057981476, -0.0005731477, -0.015158066, 0.037778635, -0.02984697, 0.0033878246, 0.039019655, -0.06097837, 0.04018991, -0.08137521, 0.036481008, 0.013477463, 0.004458016, -0.053006027, 0.0022963842, -0.050156042, -0.058914814, 0.043692283, -0.034298442, -0.033752214, -0.019235576, 0.0040337574, 0.024287106, -0.028290782, 0.03766142, 0.08565502, 0.03267412, -0.03415365, 0.00081316126, 0.026428975, 0.011670923, -0.037648913, -0.011084633, -0.027260099, -0.0072061257, -0.01620987, -0.019112477, -0.03809392, -0.0296047, 0.01767005, 0.060544785, -0.029747477, 0.055930458, 0.02384655, -0.038411178, -0.02801512, 0.016604036, 0.0022438732, 0.0066678254, 0.030649122, -0.004259874, 0.0344338, 0.051237486, -0.020727197, -0.036148928, -0.014059166, 0.06014264, -0.042739466, -0.036557145, 0.023666855, 0.04770083, -0.029727748, -0.029703068, -0.0019635845, -0.037715763, 0.011235106, -0.00050976337, 0.030634565, -0.008477314, -0.0062092086, 0.008247054, 0.040229715, 0.016569208, 0.01740746, 0.036791574, -0.00330051, -0.030058146, 0.03335966, 0.033894803, 0.006611723, -0.016015267, -0.013536917, 0.0083322795, 0.003958512, 0.003170586, 0.02233229, 0.020273993, -0.0047878264, 0.018797938, 0.0020697943, 0.05843286, -0.009680676, 0.029162375, -0.0493179, -0.0335297, -0.034526676, -0.005155598, 0.02366199, -0.0028018167, 0.017689059, -0.029402288, 0.03407929, 0.016890978, 0.022232851, -0.0029384487, -0.08362707, 0.0075421296, -0.09369953, 0.00679414, -0.034934096, 0.007555814, -0.009716312, -0.016825296, 0.01759194, -0.0292085, -0.0010098533, 0.03543492, -0.016490934, 0.0392822, -0.036026347, 0.016735129, -0.033916984, -0.03536903, -0.006863083, -0.017815711, -0.0035406675, 0.0062727323, 0.03341647, 0.027028985, -0.043732252, 0.0036206038, 0.02404224, -0.024778096, 0.007622767, -0.022578109, -0.0022604757, 0.046890922, -0.0077977707, 0.030990984, 0.0021427653, -0.021522796, -0.036863916, -0.012645114, -0.061524235, -0.041105513, 0.0061060227, 0.0048616747, 0.03724585, 0.01797435, -0.020006675, -0.007469819, -0.015674112, -0.014889625, -0.011640463, 0.010744107, -0.0046330956, 0.034590807, 0.003553621, 0.070527665, 0.0079906685, 0.043950763, -0.02650308, 0.016802182, 0.021588553, -0.012060371, -0.014583763, -0.015456777, 0.048782114, 0.0022263473, -0.032173425, -0.0048786043, -0.014356368, 0.019038001, -0.014519655, -0.020471472, -0.03145828, 0.0007570089, 0.0068450794, 0.031060591, -0.019609433, -0.037162535, -0.0010809219, -0.021768311, -0.029609986, -0.026843976, -0.06336866, -0.0020807933, 0.061940018, -0.019937955, 0.021875335, 0.014057202, -0.04193034, 0.027461233, 0.038362954, 0.012387495, 0.003642702, 0.0071875877, 0.0013356488, 0.029113289, -0.037738465, 0.00043396623, -0.006672877, 0.019857744, -0.05103513, -0.051902514, 0.029855847, -0.0041794176, -0.0011822659, 0.0033490218, -0.015920592, 0.010666131, 0.030801252, -0.01849593, -0.00096162985, 0.037749153, -0.010448492, 0.0336399, -0.0051790425, -0.0008686332, -0.04064798, 0.04120942, 0.011666124, 0.0009494849, -0.0074666687, 0.061256565, -0.015740339, 0.00068588706, 0.017435815, 0.02217186, 0.051469676, 0.0048167696, -0.003076818, -0.005133218, 0.015245538, 0.047243644, 0.011887358, -0.028087584, 0.04939418, 0.019152999, -0.03401362, -0.030483583, 0.0072149727, 0.008437969, -0.010458298, 0.038719703, -0.040285062, -0.006802268, 0.030932793, -0.010555554, -0.0051214495, -0.046149768, -0.04086435, 0.008112359, -0.016496228, 0.038234085, -0.035331868, -0.07049924, -0.037110317, -0.016172381, 0.014868264, 0.01395631, 0.0005040242, 0.017306177, 0.048178878, 0.01683899, -0.008609927, 0.02776694, -0.021835709, 0.030004779, 0.02561014, -0.023775209, -0.019328216, 0.018145274, -0.011815943, -0.021439787, -0.037042204, 0.008606304, 0.005171915, -0.012159255, 0.038639586, -0.031093355, -0.02753486, -0.05828378, 0.03692032, -0.0599967, 0.013631363, 0.057134297, -0.0131558, 0.01928695, 0.040630445, -0.008815887, -0.0031439266, 0.038246237, 0.059649672, 0.043650486, 0.041361965, 0.06791591, -0.016406855, 0.012535742, 0.021253407, 0.013509215, 0.0030617267, 0.015852759, -0.025043022, 0.0026596764, -0.051986754, -0.055778287, 0.010688864, 0.018757494, -0.00045740517, -0.035225645, 0.028071692, 0.024578657, -0.06825739, 0.002603451, 0.07608177, 0.013503326, -0.005092762, 0.0063292366, -0.001061889, -0.03131976, 0.0025060095, -0.08114608, 0.056806937, 0.0005931342, -0.034162767, -0.04967663, -0.014456237, -0.023240015, 0.021422612, 0.00022062626, -0.00037852256, 0.043242138, 0.05443462, 0.0062074084, 0.026987217, -0.04278931, -0.02880932, 0.013908249, 0.051790185, 0.016194426, 0.0834661, 0.07978437, 0.0063971956, 0.003303655, 0.00012939848, 0.042482007, -0.019467758, 0.010446344, -0.0123895295, 0.030577883, 0.0044547156, -0.037515044, -0.00013270226, 0.025538545, -0.009844217, -0.027368275, -0.0686882, 0.0036209538, -0.036046352, 0.005585267, -0.04660294, 0.017597482, -0.0030484372, 0.0018889412, -0.03741971, -0.034186102, 0.16965038, 0.02991914, 0.040976327, 0.0065722666, 0.038336117, 0.02825176, 0.020496132, -0.0127580315, 0.0058188927, -0.042612176, 0.036845233, 0.0045577497, 0.019456327, 0.0007270621, 0.012890958, 0.026495488, -0.033134185, 0.0062911254, 0.0045802034, -0.03593702, -0.06238699, -0.031389456, 0.005548845, 0.014325121, 0.011694083, 0.007996525, 0.0049564703, -0.027089693, 0.008080097, -0.030634426, 0.019096546, 0.004469562, 0.05977623, 0.0016834239, -0.03022167, -0.007803155, 0.0010101439, -0.04710892, -0.0027001458, 0.0029203817, -0.039801463, -0.012640142, 0.049133357, -0.019800687, 0.01396846, 0.027569639, 0.0004131629, 0.021910822, 0.005107991, -0.06569266, 0.050702345, -0.026049403, 0.030944236, -0.08556675, -0.058071986, -0.015866883, -0.02955288, 0.005262349, 0.040746897, 0.028895827, -0.025537828, 0.02142257, 0.014958314, -0.029376436, -0.038160134, -7.752913e-05, 0.01120576, 0.00062712334, -0.00042971552, -0.017682506, 0.0017231365, -0.015304406, 0.045517378, -0.004684733, 0.014847721, 0.021481916, -0.052220274, 0.047124814, 0.015045358, -0.030630717, -0.032424845, -0.066622995, -0.000811276, -0.0059144073, -0.010615478, 0.03151054, -0.01735207, 0.00094258616, -0.044751726, 0.03453663, 0.028907314, 0.004614819, -0.0142210275, -0.0025750878, -0.003325475]], 'total_duration': 39871500, 'load_duration': 3279000, 'prompt_eval_count': 7}

3、Cherry Studio 工具使用

(1)下载安装

官网下载:

https://xzfw52.xiazaifuwu.cn/side1017.html?bd_vid=11901086390397235651https://xzfw52.xiazaifuwu.cn/side1017.html?bd_vid=11901086390397235651网盘下载:

Cherry-Studio-1.7.13-x64-setup.exe https://www.alipan.com/s/xk19H8GgqrZ 点击链接保存,或者复制本段内容,打开「阿里云盘」APP ,无需下载极速在线查看,视频原画倍速播放。

(2)连接Ollama模型

工具访问

二、Spring AI alibaba 构建RAG

待续。。。

三、Python 构建RAG

待续。。。

相关推荐
阿尼亚要好好读书呀2 小时前
大模型实践之数据准备
大模型
YHLG2 小时前
LangChain v1.0+ 入门详解:概念、架构、组件、模板与实战
python·langchain
pen-ai2 小时前
PyTorch 张量维度处理详解
人工智能·pytorch·python
郝学胜-神的一滴2 小时前
Python对象的自省机制:深入探索对象的内心世界
开发语言·python·程序人生·算法
tjjucheng2 小时前
小程序定制开发哪家有数据支持
python
pen-ai2 小时前
【PyTorch】 nn.TransformerEncoderLayer 详解
人工智能·pytorch·python
山土成旧客2 小时前
【Python学习打卡-Day44】站在巨人的肩膀上:玩转PyTorch预训练模型与迁移学习
pytorch·python·学习
星河天欲瞩2 小时前
【深度学习Day1】环境配置(CUDA、PyTorch)
人工智能·pytorch·python·深度学习·学习·机器学习·conda
盼小辉丶2 小时前
数据不再“拖后腿”,EasyLink重塑非结构化数据处理新范式
深度学习·大模型·多模态大模型