C++ 线程互斥锁 lock_guard

std::lock_guard是 C++11 标准库提供的RAII 风格的互斥锁封装类 ,核心目的是自动管理互斥锁的加锁 / 解锁,从根本上避免 "忘记解锁导致死锁""异常导致锁无法释放" 这类低级且致命的错误。

一、先理解核心:RAII 设计思想

lock_guard的底层是RAII(资源获取即初始化) 机制 ------ 简单说:

  • 构造时获取资源lock_guard对象创建时,自动调用互斥锁的lock()方法加锁;
  • 析构时释放资源lock_guard对象销毁时(比如出作用域),自动调用互斥锁的unlock()方法解锁。

这种 "自动性" 是解决多线程锁管理问题的关键,不用再手动记着unlock()

二、lock_guard的基本用法(对比手动加解锁)

先看错误的手动加解锁(容易出问题):

cpp 复制代码
#include <mutex>
std::mutex mtx;

void wrong_func() {
    mtx.lock(); // 手动加锁
    // 临界区操作:修改共享资源
    int a = 10;
    // 忘记解锁 → 死锁!
    // 或如果临界区抛出异常,unlock()永远执行不到 → 死锁!
    // mtx.unlock(); 
}

再看正确的 lock_guard 用法(自动解锁):

cpp 复制代码
#include <mutex>
std::mutex mtx;

void right_func() {
    // 创建lock_guard对象时,自动调用mtx.lock()
    std::lock_guard<std::mutex> lock(mtx);
    
    // 临界区:安全操作共享资源
    int a = 10;
    
} // lock_guard对象出作用域,析构时自动调用mtx.unlock()
  // 即使临界区抛出异常,析构函数也会执行 → 必解锁!

三、lock_guard的核心特性

1. 不可拷贝、不可移动

lock_guard被设计为 "只能在当前作用域使用",禁止拷贝 / 移动,避免锁的管理权被非法转移:

cpp 复制代码
std::lock_guard<std::mutex> lock1(mtx);
// std::lock_guard<std::mutex> lock2 = lock1; // 编译错误:禁止拷贝
// std::lock_guard<std::mutex> lock3(std::move(lock1)); // 编译错误:禁止移动

2. 作用域决定解锁时机

lock_guard的解锁时机完全由作用域 控制,你可以通过{}手动限定作用域,精准控制解锁时机:

cpp 复制代码
void func() {
    {
        std::lock_guard<std::mutex> lock(mtx);
        // 短临界区:只保护必要的代码
        shared_data = 100;
    } // 此处提前解锁,不影响后续非临界区代码
    
    // 非临界区:无需持锁,提升并发效率
    sleep(1); 
}

3. 轻量级、无额外开销

lock_guard是极简封装,没有额外的成员函数(比如unlock()/lock()),运行时几乎无性能损耗,适合简单的临界区保护。

4. 异常安全

这是lock_guard最核心的优势之一:即使临界区抛出异常,C++ 的异常机制会保证局部对象的析构函数执行,从而确保锁被释放:

cpp 复制代码
void func_with_exception() {
    std::lock_guard<std::mutex> lock(mtx);
    // 临界区抛出异常
    throw std::runtime_error("出错了");
    // 无需手动unlock,析构函数会处理
}

int main() {
    try {
        func_with_exception();
    } catch (...) {
        // 捕获异常后,锁已经被释放,其他线程可正常获取
    }
    return 0;
}

四、lock_guard vs unique_lock(选型参考)

lock_guard是 "轻量版" 锁管理,std::unique_lock是 "功能版",两者的核心区别如下:

特性 std::lock_guard std::unique_lock
自动加解锁 ✅ 支持 ✅ 支持
手动解锁(unlock() ❌ 不支持 ✅ 支持
配合条件变量(cv.wait() ❌ 不支持 ✅ 支持
性能 极致轻量 略重(有额外状态)
适用场景 简单临界区保护 复杂同步(如条件变量、手动控制解锁)

简单说:

  • 只要是 "加锁后,作用域结束解锁" 的简单场景,优先用lock_guard(轻量、高效);
  • 如果需要手动解锁、配合条件变量(比如cv.wait()需要解锁后阻塞),用unique_lock

五、完整示例:lock_guard 保护共享资源

cpp 复制代码
#include <iostream>
#include <thread>
#include <mutex>
#include <vector>

std::mutex mtx;
int shared_count = 0; // 共享资源

// 线程函数:累加共享变量
void increment(int n) {
    for (int i = 0; i < n; ++i) {
        // lock_guard自动加锁/解锁
        std::lock_guard<std::mutex> lock(mtx);
        shared_count++;
        // 出循环迭代的作用域,自动解锁
    }
}

int main() {
    std::vector<std::thread> threads;
    // 创建10个线程,每个线程累加1000次
    for (int i = 0; i < 10; ++i) {
        threads.emplace_back(increment, 1000);
    }
    // 等待所有线程结束
    for (auto& t : threads) {
        t.join();
    }
    // 正确输出10000,无数据错乱
    std::cout << "最终count值:" << shared_count << std::endl;
    return 0;
}

总结

  1. std::lock_guard是 C++11 的 RAII 锁封装,构造加锁、析构解锁,核心解决 "忘记解锁 / 异常导致锁泄漏" 的问题;
  2. 轻量级、异常安全、不可拷贝,适合简单临界区的线程安全保护;
  3. 解锁时机由作用域决定,可通过{}手动缩小作用域,提升并发效率;
  4. 复杂同步场景(如条件变量)用unique_lock,简单场景优先用lock_guard
相关推荐
小李独爱秋2 小时前
计算机网络经典问题透视:试比较先进先出排队(FIFO)、公平排队(FQ)和加权公平排队(WFQ)的优缺点
服务器·计算机网络·算法·web安全·信息与通信·队列
永远都不秃头的程序员(互关)2 小时前
【K-Means深度探索(十)】进阶思考:K-Medoids与Fuzzy C-Means,K-Means的“亲戚”们!
算法·机器学习·kmeans
Remember_9932 小时前
【LeetCode精选算法】二分查找专题一
java·数据结构·算法·spring·leetcode·哈希算法
刘某某.2 小时前
大模型数据传输3 种方式对比
算法
橘子师兄2 小时前
C++AI大模型接入SDK—快速上手
开发语言·c++·人工智能
wen__xvn2 小时前
基础算法集训第03天:递推
算法
wen__xvn2 小时前
算法基础集训第19天:广度优先搜索
算法·宽度优先
这就是佬们吗2 小时前
力扣---leetcode48
java·笔记·后端·算法·leetcode·idea