1. CDC技术架构概览
1.1 CDC核心概念与价值
变更数据捕获的技术本质与业务价值。
CDC技术体系架构
├── 数据捕获层 (Capture Layer)
│ ├── 数据库日志解析 (MySQL binlog, PostgreSQL WAL)
│ ├── 变更事件提取 (INSERT, UPDATE, DELETE)
│ └── 事务一致性保障
├── 数据处理层 (Processing Layer)
│ ├── 数据格式转换 (Avro, JSON, Protobuf)
│ ├── 模式演进处理 (Schema Evolution)
│ └── 数据清洗与丰富
└── 数据分发层 (Distribution Layer)
├── 消息队列分发 (Kafka, Pulsar)
├── 数据湖落地 (Hudi, Iceberg)
└── 实时数仓更新 (ClickHouse, StarRocks)
1.2 Debezium核心优势
相比其他CDC方案的技术优势。
sql
-- Debezium核心特性对比
-- 1. 基于数据库日志,无侵入性
-- 2. 支持事务一致性,保证Exactly-Once
-- 3. 完整的模式管理,支持Schema Registry
-- 4. 多数据库支持:MySQL, PostgreSQL, Oracle, SQL Server, MongoDB
-- 5. 丰富的连接器生态,与Kafka完美集成
-- 典型应用场景
-- 数据库实时同步 -> 数据仓库实时更新
-- 微服务数据变更通知 -> 缓存失效、搜索索引更新
-- 审计与合规 -> 操作日志记录、数据变更追踪
-- 数据迁移与双写 -> 零停机迁移、灰度发布
2. Debezium环境部署与配置
2.1 完整部署架构
生产级Debezium集群部署方案。
yaml
# docker-compose.yaml - 完整CDC环境
version: '3.8'
services:
# 源数据库(MySQL)
mysql-source:
image: mysql:8.0
environment:
MYSQL_ROOT_PASSWORD: cdcpassword
MYSQL_DATABASE: inventory
ports:
- "3306:3306"
volumes:
- mysql_data:/var/lib/mysql
- ./config/my.cnf:/etc/mysql/conf.d/cdc.cnf
# Kafka集群
zookeeper:
image: confluentinc/cp-zookeeper:7.3.0
environment:
ZOOKEEPER_CLIENT_PORT: 2181
kafka:
image: confluentinc/cp-kafka:7.3.0
depends_on: [zookeeper]
environment:
KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181
KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://kafka:9092
KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
# Schema Registry
schema-registry:
image: confluentinc/cp-schema-registry:7.3.0
depends_on: [kafka, zookeeper]
environment:
SCHEMA_REGISTRY_KAFKASTORE_BOOTSTRAP_SERVERS: kafka:9092
SCHEMA_REGISTRY_HOST_NAME: schema-registry
SCHEMA_REGISTRY_LISTENERS: http://0.0.0.0:8081
# Debezium Connect分布式集群
connect-1:
image: debezium/connect:2.0
depends_on: [kafka, schema-registry, mysql-source]
environment:
BOOTSTRAP_SERVERS: kafka:9092
GROUP_ID: connect-cluster
CONFIG_STORAGE_TOPIC: connect-configs
OFFSET_STORAGE_TOPIC: connect-offsets
STATUS_STORAGE_TOPIC: connect-status
KEY_CONVERTER: io.confluent.connect.avro.AvroConverter
VALUE_CONVERTER: io.confluent.connect.avro.AvroConverter
CONNECT_KEY_CONVERTER_SCHEMA_REGISTRY_URL: http://schema-registry:8081
CONNECT_VALUE_CONVERTER_SCHEMA_REGISTRY_URL: http://schema-registry:8081
CONNECT_CONFIG_STORAGE_REPLICATION_FACTOR: 1
CONNECT_OFFSET_STORAGE_REPLICATION_FACTOR: 1
CONNECT_STATUS_STORAGE_REPLICATION_FACTOR: 1
ports:
- "8083:8083"
connect-2:
image: debezium/connect:2.0
environment:
# 相同配置,实现集群部署
BOOTSTRAP_SERVERS: kafka:9092
GROUP_ID: connect-cluster
# ... 其他配置相同
ports:
- "8084:8083"
volumes:
mysql_data:
2.2 MySQL源端配置
数据库层面的CDC准备工作。
sql
-- MySQL CDC前置配置
-- 1. 启用binlog(必须)
-- 在my.cnf中配置:
[mysqld]
server-id = 1
log_bin = mysql-bin
binlog_format = ROW -- 必须为ROW模式
binlog_row_image = FULL -- 全镜像模式
expire_logs_days = 7 -- 日志保留7天
max_binlog_size = 100M
-- 2. 创建CDC专用用户
CREATE USER 'cdc_user'@'%' IDENTIFIED BY 'securepassword';
GRANT SELECT, RELOAD, SHOW DATABASES, REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'cdc_user'@'%';
FLUSH PRIVILEGES;
-- 3. 检查binlog状态
SHOW MASTER STATUS;
SHOW VARIABLES LIKE 'log_bin';
SHOW VARIABLES LIKE 'binlog_format';
-- 4. 创建测试表
CREATE DATABASE inventory;
USE inventory;
CREATE TABLE products (
id INT PRIMARY KEY AUTO_INCREMENT,
name VARCHAR(255) NOT NULL,
description TEXT,
price DECIMAL(10,2),
quantity INT DEFAULT 0,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
is_deleted TINYINT(1) DEFAULT 0
) ENGINE=InnoDB;
CREATE TABLE customers (
id INT PRIMARY KEY AUTO_INCREMENT,
first_name VARCHAR(50),
last_name VARCHAR(50),
email VARCHAR(100) UNIQUE,
phone VARCHAR(20),
address JSON,
metadata JSON,
version BIGINT DEFAULT 0 -- 乐观锁版本号
) ENGINE=InnoDB;
3. Debezium连接器配置实战
3.1 基础连接器配置
核心配置参数详解。
json
// POST /connectors
{
"name": "inventory-connector",
"config": {
"connector.class": "io.debezium.connector.mysql.MySqlConnector",
// 数据库连接配置
"database.hostname": "mysql-source",
"database.port": "3306",
"database.user": "cdc_user",
"database.password": "securepassword",
"database.server.id": "184054", // 唯一服务器ID
// 数据库白名单
"database.include.list": "inventory",
"table.include.list": "inventory.products,inventory.customers",
// Topic命名配置
"topic.prefix": "mysql-server",
// 序列化配置
"key.converter": "io.confluent.connect.avro.AvroConverter",
"value.converter": "io.confluent.connect.avro.AvroConverter",
"key.converter.schema.registry.url": "http://schema-registry:8081",
"value.converter.schema.registry.url": "http://schema-registry:8081",
// 快照模式
"snapshot.mode": "initial", // 初次启动时全量快照
// 二进制日志处理
"binlog.buffer.size": "0",
"max.batch.size": "2048",
"max.queue.size": "8192",
// 心跳配置(监控连接健康)
"heartbeat.interval.ms": "5000",
"heartbeat.topics.prefix": "__debezium-heartbeat",
// 时区处理
"database.serverTimezone": "UTC",
// 异常处理
"errors.tolerance": "none", // 严格模式
"errors.log.enable": "true",
"errors.log.include.messages": "true"
}
}
3.2 高级配置优化
生产环境调优参数。
json
{
"name": "inventory-connector-optimized",
"config": {
// 基础配置同上...
// 性能优化
"max.queue.size": "32768", // 增大队列缓冲
"max.batch.size": "4096", // 增大批处理大小
"poll.interval.ms": "100", // 缩短轮询间隔
// 内存优化
"binary.handling.mode": "base64", // 二进制字段处理
"decimal.handling.mode": "double", // 小数处理模式
// 数据过滤
"column.include.list": "inventory.products.id,inventory.products.name,inventory.products.price",
"column.exclude.list": "inventory.products.description",
// 逻辑删除处理
"table.ignore.builtin.primary.key.filters": "inventory.products",
"message.key.columns": "inventory.products:id",
// 增量快照配置(大表优化)
"snapshot.mode": "initial_only", // 仅初始快照
"incremental.snapshot.chunk.size": "1024",
"incremental.snapshot.allow.schema.changes": "true",
// 监控指标
"metrics.enabled": "true",
"metrics.port": "8083",
"metrics.jmx.enabled": "true",
// 安全配置
"database.ssl.mode": "preferred",
"database.history.kafka.topic.ssl.enabled": "true"
}
}
3.3 多表模式与正则匹配
灵活的表包含策略。
json
{
"name": "regex-connector",
"config": {
// 正则表达式匹配表
"table.include.list": "inventory\\.(.*)", // 所有inventory库的表
"table.exclude.list": "inventory\\.audit_.*,inventory\\.temp_.*",
// 按前缀匹配
"table.include.list": "inventory.sales_,inventory.user_",
// 列级过滤
"column.include.list": "inventory\\.products:(id|name|price|updated_at)",
"column.exclude.list": "inventory\\.products:(created_at|is_deleted)",
// 自定义topic路由
"topic.routing.rules": "[
{
\"topic.regex\": \"inventory\\.(.*)\\.(.*)\",
\"topic.replacement\": \"db_$1_$2\"
}
]",
// 自定义消息转换
"transforms": "unwrap,route",
"transforms.unwrap.type": "io.debezium.transforms.ExtractNewRecordState",
"transforms.unwrap.drop.tombstones": "false",
"transforms.route.type": "org.apache.kafka.connect.transforms.RegexRouter",
"transforms.route.regex": "([^.]+)\\.([^.]+)\\.([^.]+)",
"transforms.route.replacement": "$1_$2_$3"
}
}
4. Flink CDC实时处理
4.1 Flink CDC Source配置
原生Flink CDC连接器使用。
sql
-- 1. 创建MySQL CDC源表
CREATE TABLE products_cdc (
id INT,
name STRING,
description STRING,
price DECIMAL(10, 2),
quantity INT,
created_at TIMESTAMP(3),
updated_at TIMESTAMP(3),
is_deleted BOOLEAN,
op STRING METADATA FROM 'op', -- 操作类型: c,u,d
ts_ms TIMESTAMP(3) METADATA FROM 'source.timestamp' -- 变更时间
) WITH (
'connector' = 'mysql-cdc',
'hostname' = 'mysql-source',
'port' = '3306',
'username' = 'cdc_user',
'password' = 'securepassword',
'database-name' = 'inventory',
'table-name' = 'products',
-- 连接池配置
'connection.pool.size' = '5',
'connect.timeout' = '30s',
'connect.max-retries' = '3',
-- 读取配置
'server-time-zone' = 'UTC',
'scan.startup.mode' = 'initial', -- 初始快照+增量
'scan.incremental.snapshot.chunk.size' = '1024',
'debezium.snapshot.locking.mode' = 'minimal',
-- 心跳检测
'heartbeat.interval' = '30s',
-- 性能优化参数
'debezium.min.row.count.to.stream.results' = '1000'
);
-- 2. 创建JDBC维表(用于关联)
CREATE TABLE product_categories (
product_id INT PRIMARY KEY NOT ENFORCED,
category_name STRING,
update_time TIMESTAMP(3)
) WITH (
'connector' = 'jdbc',
'url' = 'jdbc:mysql://dim-db:3306/dimension',
'table-name' = 'product_categories',
'username' = 'flink_user',
'password' = '${JDBC_PASSWORD}',
'lookup.cache' = 'PARTITIONED',
'lookup.partitioned-cache.expire-after-write' = '1h'
);
-- 3. 实时ETL处理管道
CREATE TABLE enriched_products (
product_id INT,
product_name STRING,
category STRING,
current_price DECIMAL(10,2),
operation_type STRING,
event_time TIMESTAMP(3),
processed_time TIMESTAMP(3)
) WITH (
'connector' = 'kafka',
'topic' = 'enriched-products',
'properties.bootstrap.servers' = 'kafka:9092',
'format' = 'avro-confluent',
'avro-confluent.schema-registry.url' = 'http://schema-registry:8081'
);
-- 4. 实时处理逻辑
INSERT INTO enriched_products
SELECT
p.id AS product_id,
p.name AS product_name,
c.category_name AS category,
p.price AS current_price,
p.op AS operation_type,
p.ts_ms AS event_time,
PROCTIME() AS processed_time
FROM products_cdc p
LEFT JOIN product_categories FOR SYSTEM_TIME AS OF p.ts_ms AS c
ON p.id = c.product_id
WHERE p.is_deleted = false; -- 过滤逻辑删除
4.2 变更数据流处理
CDC事件的各种处理模式。
sql
-- 1. 仅处理增量变更(忽略初始快照)
CREATE TABLE incremental_changes AS
SELECT *
FROM products_cdc
WHERE op IN ('c', 'u', 'd') -- 只处理增删改
AND ts_ms > CURRENT_TIMESTAMP - INTERVAL '7' DAY; -- 最近7天数据
-- 2. 类型转换与数据清洗
CREATE TABLE cleaned_products AS
SELECT
id,
TRIM(name) AS product_name, -- 去除空格
CAST(price AS DOUBLE) AS price_double, -- 类型转换
CASE
WHEN quantity < 0 THEN 0 -- 数据校正
ELSE quantity
END AS valid_quantity,
-- 处理JSON字段
JSON_VALUE(metadata, '$.brand') AS brand,
JSON_VALUE(metadata, '$.weight') AS weight,
op,
ts_ms
FROM products_cdc;
-- 3. 变更流水表(CDC日志)
CREATE TABLE cdc_audit_log (
table_name STRING,
operation STRING,
record_key STRING,
before_state STRING, -- 变更前状态(JSON)
after_state STRING, -- 变更后状态(JSON)
change_time TIMESTAMP(3),
process_time TIMESTAMP(3)
) WITH ('connector' = 'elasticsearch');
-- 记录所有变更操作
INSERT INTO cdc_audit_log
SELECT
'products' AS table_name,
op AS operation,
CAST(id AS STRING) AS record_key,
-- 变更前数据(删除和更新操作)
CASE
WHEN op IN ('d', 'u') THEN
JSON_OBJECT(
'id', id,
'name', name,
'price', price,
'quantity', quantity
)
ELSE NULL
END AS before_state,
-- 变更后数据(插入和更新操作)
CASE
WHEN op IN ('c', 'u') THEN
JSON_OBJECT(
'id', id,
'name', name,
'price', price,
'quantity', quantity
)
ELSE NULL
END AS after_state,
ts_ms AS change_time,
PROCTIME() AS process_time
FROM products_cdc;
-- 4. 物化视图实时更新
CREATE TABLE product_inventory_mv (
product_id INT PRIMARY KEY NOT ENFORCED,
product_name STRING,
current_stock INT,
last_updated TIMESTAMP(3),
version BIGINT
) WITH (
'connector' = 'jdbc',
'table-name' = 'product_inventory_materialized',
'url' = 'jdbc:mysql://mv-db:3306/materialized_views',
'username' = 'flink_user'
);
-- 实时维护物化视图
INSERT INTO product_inventory_mv
SELECT
id AS product_id,
name AS product_name,
quantity AS current_stock,
ts_ms AS last_updated,
-- 版本号(用于并发更新)
ROW_NUMBER() OVER (PARTITION BY id ORDER BY ts_ms DESC) AS version
FROM (
SELECT *, ROW_NUMBER() OVER (PARTITION BY id ORDER BY ts_ms DESC) AS rn
FROM products_cdc
WHERE op IN ('c', 'u') -- 只关心插入和更新
)
WHERE rn = 1; -- 每个产品的最新状态
5. 高级CDC特性
5.1 模式演进处理
Schema变更的自动适应。
sql
-- 1. 自动Schema演进配置
CREATE TABLE schema_evolution_aware (
id INT,
name STRING,
-- 可选字段(新版本可能添加)
new_column STRING,
metadata JSON -- 灵活Schema字段
) WITH (
'connector' = 'mysql-cdc',
'hostname' = 'mysql-source',
'database-name' = 'inventory',
'table-name' = 'products',
-- Schema演进配置
'debezium.schema.history.internal' = 'io.debezium.relational.history.MemorySchemaHistory',
'debezium.schema.history.internal.kafka.topic' = 'schema-history',
'debezium.schema.history.internal.kafka.recovery.attempts' = '3',
-- 字段映射配置
'debezium.column.mapping' = 'new_column:new_column_name',
'debezium.column.truncate.to.length' = '255',
-- 默认值处理
'debezium.column.default.value' = 'new_column:default_value'
);
-- 2. 动态Schema处理
CREATE TABLE dynamic_schema_handling AS
SELECT
id,
name,
-- 使用JSON处理动态字段
JSON_OBJECT(
'price', price,
'quantity', quantity,
'description', description
) AS dynamic_attributes,
-- 提取元数据
JSON_VALUE(metadata, '$.category') AS product_category,
JSON_VALUE(metadata, '$.tags[0]') AS primary_tag,
ts_ms
FROM products_cdc;
-- 3. Schema版本控制
CREATE TABLE schema_version_tracking (
table_name STRING,
schema_version INT,
column_changes ARRAY<STRING>,
change_time TIMESTAMP(3),
change_type STRING -- ADD_COLUMN, DROP_COLUMN, MODIFY_COLUMN
) WITH ('connector' = 'jdbc');
-- 检测Schema变更
INSERT INTO schema_version_tracking
SELECT
'products' AS table_name,
schema_version,
ARRAY[changed_column] AS column_changes,
ts_ms AS change_time,
change_type
FROM (
SELECT
*,
LAG(schema) OVER (ORDER BY ts_ms) AS prev_schema,
CASE
WHEN schema != LAG(schema) OVER (ORDER BY ts_ms) THEN 'SCHEMA_CHANGE'
ELSE 'NO_CHANGE'
END AS change_type
FROM schema_monitoring_stream
)
WHERE change_type = 'SCHEMA_CHANGE';
5.2 事务一致性保障
分布式事务的精确一次处理。
sql
-- 1. 事务边界识别
CREATE TABLE transaction_boundaries (
transaction_id STRING,
start_time TIMESTAMP(3),
commit_time TIMESTAMP(3),
table_count INT,
record_count BIGINT,
status STRING -- COMMITTED, ROLLED_BACK
) WITH ('connector' = 'kafka');
-- 提取事务信息
INSERT INTO transaction_boundaries
SELECT
transaction_id,
MIN(ts_ms) AS start_time,
MAX(ts_ms) AS commit_time,
COUNT(DISTINCT table_name) AS table_count,
COUNT(*) AS record_count,
'COMMITTED' AS status -- Debezium只推送已提交事务
FROM (
SELECT
transaction_id,
table_name,
ts_ms,
op
FROM cdc_stream
WHERE transaction_id IS NOT NULL
)
GROUP BY transaction_id;
-- 2. 跨表事务关联
CREATE TABLE cross_table_transactions AS
SELECT
t.transaction_id,
t.start_time,
t.commit_time,
COLLECT(DISTINCT table_name) AS affected_tables,
SUM(CASE WHEN op = 'c' THEN 1 ELSE 0 END) AS inserts,
SUM(CASE WHEN op = 'u' THEN 1 ELSE 0 END) AS updates,
SUM(CASE WHEN op = 'd' THEN 1 ELSE 0 END) AS deletes
FROM transaction_boundaries t
JOIN cdc_stream c ON t.transaction_id = c.transaction_id
GROUP BY t.transaction_id, t.start_time, t.commit_time;
-- 3. 端到端精确一次保障
CREATE TABLE exactly_once_processing (
transaction_id STRING PRIMARY KEY NOT ENFORCED,
processed_time TIMESTAMP(3),
checkpoint_id BIGINT,
status STRING
) WITH (
'connector' = 'jdbc',
'table-name' = 'processing_state'
);
-- 事务级精确一次处理
INSERT INTO exactly_once_processing
SELECT
transaction_id,
PROCTIME() AS processed_time,
CURRENT_CHECKPOINT_ID() AS checkpoint_id,
'PROCESSED' AS status
FROM transaction_boundaries
WHERE transaction_id NOT IN (
SELECT transaction_id FROM exactly_once_processing
);
6. 监控与运维
6.1 CDC健康监控
全链路健康状态监控。
sql
-- 1. Debezium连接器监控
CREATE TABLE connector_health_monitor (
connector_name STRING,
task_id INT,
status STRING, -- RUNNING, FAILED, PAUSED
last_heartbeat TIMESTAMP(3),
lag_seconds BIGINT,
error_message STRING
) WITH ('connector' = 'prometheus');
-- 监控查询
INSERT INTO connector_health_monitor
SELECT
connector_name,
task_id,
CASE
WHEN CURRENT_TIMESTAMP - last_heartbeat > INTERVAL '60' SECOND THEN 'FAILED'
WHEN lag_seconds > 300 THEN 'LAGGING'
ELSE 'RUNNING'
END AS status,
last_heartbeat,
lag_seconds,
error_message
FROM debezium_metrics;
-- 2. 延迟监控告警
CREATE TABLE latency_alerts (
alert_time TIMESTAMP(3),
connector_name STRING,
current_lag BIGINT,
threshold_lag BIGINT,
alert_level STRING -- WARNING, CRITICAL
) WITH ('connector' = 'slack');
INSERT INTO latency_alerts
SELECT
CURRENT_TIMESTAMP,
connector_name,
lag_seconds,
300 AS threshold_lag, -- 5分钟阈值
CASE
WHEN lag_seconds > 600 THEN 'CRITICAL'
WHEN lag_seconds > 300 THEN 'WARNING'
ELSE 'NORMAL'
END AS alert_level
FROM connector_health_monitor
WHERE lag_seconds > 300;
-- 3. 数据质量监控
CREATE TABLE cdc_data_quality (
check_time TIMESTAMP(3),
table_name STRING,
total_records BIGINT,
failed_records BIGINT,
success_rate DOUBLE,
last_success_time TIMESTAMP(3)
) WITH ('connector' = 'elasticsearch');
INSERT INTO cdc_data_quality
SELECT
CURRENT_TIMESTAMP,
table_name,
COUNT(*) AS total_records,
SUM(CASE WHEN error IS NOT NULL THEN 1 ELSE 0 END) AS failed_records,
(COUNT(*) - SUM(CASE WHEN error IS NOT NULL THEN 1 ELSE 0 END)) * 100.0 / COUNT(*) AS success_rate,
MAX(process_time) AS last_success_time
FROM cdc_processing_log
GROUP BY table_name;
6.生产环境最佳实践
6.1 性能优化指南
大规模CDC管道的性能调优。
sql
-- 1. 并行度优化
SET 'parallelism.default' = '16';
SET 'table.exec.resource.default-parallelism' = '16';
-- 按表分区并行处理
CREATE TABLE parallel_cdc_processing AS
SELECT
table_name,
partition_id,
record_count,
processing_time
FROM cdc_stream
PARTITION BY table_name, MOD(id, 16) -- 16个分区
;
-- 2. 状态后端优化
SET 'state.backend' = 'rocksdb';
SET 'state.backend.rocksdb.memory.managed' = 'true';
SET 'state.backend.rocksdb.memory.fixed-per-slot' = '512m';
SET 'state.backend.rocksdb.thread.num' = '4';
-- 3. 网络优化
SET 'taskmanager.memory.network.min' = '64m';
SET 'taskmanager.memory.network.max' = '512m';
SET 'taskmanager.network.memory.buffers-per-channel' = '2';
-- 4. 检查点优化
SET 'execution.checkpointing.interval' = '3min';
SET 'execution.checkpointing.timeout' = '10min';
SET 'execution.checkpointing.min-pause' = '30s';
SET 'state.checkpoints.dir' = 'hdfs:///flink/checkpoints/cdc';
-- 5. 资源隔离
SET 'taskmanager.memory.process.size' = '4096m';
SET 'taskmanager.memory.jvm-overhead.min' = '256m';
SET 'taskmanager.memory.managed.fraction' = '0.4';
6.2 安全与合规
企业级安全配置。
sql
-- 1. 数据加密
SET 'security.ssl.enabled' = 'true';
SET 'security.ssl.keystore' = '/etc/security/keystores/cdc.keystore';
SET 'security.ssl.keystore-password' = '${KEYSTORE_PASSWORD}';
SET 'security.ssl.truststore' = '/etc/security/keystores/cdc.truststore';
-- 2. 审计日志
CREATE TABLE cdc_audit_trail (
event_time TIMESTAMP(3),
user_name STRING,
operation STRING,
table_name STRING,
record_id STRING,
client_ip STRING,
query_id STRING
) WITH ('connector' = 'elasticsearch');
-- 3. 数据脱敏
CREATE FUNCTION mask_sensitive AS 'com.company.security.DataMaskingFunction';
CREATE TABLE masked_cdc_stream AS
SELECT
id,
mask_sensitive(name, 'name') AS masked_name,
mask_sensitive(email, 'email') AS masked_email,
op,
ts_ms
FROM customers_cdc;
-- 4. 访问控制
CREATE TABLE access_control_rules (
user_name STRING,
table_name STRING,
permission_type STRING, -- SELECT, INSERT, UPDATE
filter_condition STRING
) WITH ('connector' = 'jdbc');
CREATE VIEW secured_cdc_view AS
SELECT *
FROM customers_cdc
WHERE EXISTS (
SELECT 1 FROM access_control_rules
WHERE user_name = CURRENT_USER
AND table_name = 'customers'
AND permission_type = 'SELECT'
AND eval(filter_condition) = true -- 动态行级过滤
);
7. 总结
基于Debezium的CDC实时同步提供了企业级的数据变更捕获解决方案。关键成功要素包括:
无侵入采集: 基于数据库日志,不影响业务性能
事务一致性: 保证Exactly-Once语义和事务完整性
模式演进: 自动处理Schema变更,向前兼容
高性能: 分布式架构支持大规模数据同步
生态集成: 与Kafka、Flink完美集成,形成完整数据管道
运维保障: 完善的监控、告警、故障恢复机制
通过合理的架构设计和配置优化,CDC同步可以成为现代数据架构的核心数据流动引擎,支撑实时数仓、数据湖、微服务等多种应用场景。