【Qwen】DataArguments说明

DataArguments

Holds all configuration options for data loading and preprocessing in Qwen-VL fine-tuning. Passed as data_args after parsing from the command line (e.g. via HfArgumentParser) and used by make_supervised_data_module to build the dataset and collator.


Attributes

Name Type Default Description
dataset_use str "" Comma-separated dataset names or paths. Resolved via data_list() to get annotation_path and data_path for LazySupervisedDataset.
data_flatten bool False If True, use FlattenedDataCollatorForSupervisedDataset and packed sequences; otherwise use DataCollatorForSupervisedDataset.
data_packing bool False If True, enable sequence packing in the dataset (_get_packed_item).
base_interval int 2 Base interval used in packing or flattening (exact meaning depends on data_list / collator implementation).
max_pixels int 28 * 28 * 576 Maximum number of pixels (e.g. H * W) for an image. Written to the image processor's size["longest_edge"] / max_pixels.
min_pixels int 28 * 28 * 16 Minimum number of pixels for an image. Written to the image processor's size["shortest_edge"] / min_pixels.
video_max_frames int or None 8 Maximum number of sampled frames per video (used by video processor if present).
video_min_frames int or None 4 Minimum number of sampled frames per video.
video_max_pixels int 1024 * 28 * 28 Maximum total pixels for video frames. Set on the video processor when available.
video_min_pixels int 256 * 28 * 28 Minimum total pixels for video frames.
video_fps float 2 Frames per second used when sampling video.

Usage

Parsed together with ModelArguments and TrainingArguments in the training script:

python 复制代码
parser = transformers.HfArgumentParser(
    (ModelArguments, DataArguments, TrainingArguments)
)
model_args, data_args, training_args = parser.parse_args_into_dataclasses()

data_module = make_supervised_data_module(processor, data_args=data_args)

Command-line example:

bash 复制代码
python qwenvl/train/train_qwen.py \
    --dataset_use "path/to/annotations.json" \
    --data_flatten True \
    --max_pixels 50176 \
    --min_pixels 784

Note

  • DataArguments is defined in qwenvl/train/argument.py and is a dataclass. The parsed instance is typically named data_args in the training pipeline.
  • The image processor's pixel limits are updated in update_processor_pixels(processor, data_args) using max_pixels and min_pixels.
相关推荐
六义义3 小时前
java基础十二
java·数据结构·算法
四维碎片3 小时前
QSettings + INI 笔记
笔记·qt·算法
Tansmjs3 小时前
C++与GPU计算(CUDA)
开发语言·c++·算法
逄逄不是胖胖3 小时前
《动手学深度学习》-54循环神经网络RNN
人工智能·深度学习
独自破碎E3 小时前
【优先级队列】主持人调度(二)
算法
weixin_445476684 小时前
leetCode每日一题——边反转的最小成本
算法·leetcode·职场和发展
打工的小王4 小时前
LeetCode Hot100(一)二分查找
算法·leetcode·职场和发展
beginner.zs4 小时前
注意力革命:Transformer架构深度解析与全景应用
深度学习·架构·transformer
Swift社区4 小时前
LeetCode 385 迷你语法分析器
算法·leetcode·职场和发展
sonadorje4 小时前
svd在图像处理中的应用
算法