玩转链表合并✨:从 2 个到 k 个升序链表的通关秘籍
在算法面试的高频题库里,链表相关题目一直是 "常客",而 "升序链表合并" 更是其中的经典题型 ------ 从基础的「合并两个升序链表」,到进阶的「合并 k 个升序链表」,难度层层递进,却也藏着通用的解题逻辑。今天就带大家拆解这两道题,从核心思路到代码实现,再到面试官常问的 "灵魂拷问",一次性吃透✨!
一、合并两个升序链表:基础版 "链表拼接术" 📌
给定两个升序排列的单链表,要求合并成一个新的升序链表并返回头节点。这道题是链表合并的 "入门款",掌握它的核心逻辑,才能轻松应对后续的 k 个链表合并。
1. 解题关键:3 个 "核心武器"
想要优雅解决这道题,离不开三个关键设计,少一个都可能让边界处理变得繁琐:
- 🛡️ 哨兵节点(dummy):值通常设为 - 1(无实际意义),作用是 "简化边界处理"。比如当两个链表都为空、或其中一个为空时,不用单独判断头节点,直接返回
dummy.next即可。 - 📌 动态指针(cur):初始指向哨兵节点,相当于 "拼接工人",负责把选中的节点接在新链表后面,每拼接一个节点就向后移动一步。
- 🔍 双指针(p1、p2):分别指向两个链表的当前遍历节点,是 "决策核心"。通过比较
p1.val和p2.val,决定该拼接哪个节点,直到其中一个链表遍历完毕。
具体执行逻辑:① 双指针同步遍历,while循环条件是p1和p2都不为空;② 若p1.val ≤ p2.val,把p1接在cur.next,同时p1后移;反之则拼接p2,p2后移;③ 每轮循环结束后,cur后移一步,准备接下一个节点;④ 循环结束后,必有一个链表还有剩余节点(本身有序),直接把剩余链表接在cur.next即可,无需逐个遍历。
2. 代码展示
JS 版本
javascript
/**
* Definition for singly-linked list.
* function ListNode(val, next) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
*/
/**
* 合并两个升序有序链表,返回新的升序链表头节点
* @param {ListNode} list1 - 第一个升序有序链表头节点
* @param {ListNode} list2 - 第二个升序有序链表头节点
* @returns {ListNode} 合并后的升序链表头节点
*/
var mergeTwoLists = function (list1, list2) {
// 哨兵节点(哑节点):简化空链表等边界情况处理
let dummy = new ListNode(-1);
// 动态指针:负责拼接新节点,初始指向哨兵节点
let cur = dummy;
// 双指针:分别遍历两个输入链表
let p1 = list1, p2 = list2;
// 双指针同步遍历,直到其中一个链表遍历完毕
while (p1 !== null && p2 !== null) {
if (p1.val <= p2.val) {
// 拼接p1节点,p1指针后移
cur.next = p1;
p1 = p1.next;
} else {
// 拼接p2节点,p2指针后移
cur.next = p2;
p2 = p2.next;
}
// 动态指针后移,准备拼接下一个节点
cur = cur.next;
}
// 处理剩余节点:直接拼接未遍历完的链表(链表本身有序)
cur.next = p1 !== null ? p1 : p2;
// 哨兵节点的next是合并后链表的真实头节点
return dummy.next;
};
JAVA 版本
java
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {
public ListNode mergeTwoLists(ListNode list1, ListNode list2) {
// 哨兵节点(哑节点):简化边界处理
ListNode dummy = new ListNode(-1);
// 动态指针:负责拼接新节点
ListNode cur = dummy;
// 双指针:遍历两个输入链表
ListNode p1 = list1, p2 = list2;
// 双指针同步遍历,直到其中一个链表遍历完毕
while (p1 != null && p2 != null) {
if (p1.val <= p2.val) {
// 拼接p1节点,p1后移
cur.next = p1;
p1 = p1.next;
} else {
// 拼接p2节点,p2后移
cur.next = p2;
p2 = p2.next;
}
// 动态指针后移
cur = cur.next;
}
// 拼接剩余未遍历完的链表
cur.next = p1 != null ? p1 : p2;
// 返回合并后链表的真实头节点
return dummy.next;
}
}
二、合并 k 个升序链表:进阶版 "分治优化术" 🚀
当链表数量从 2 个变成 k 个,直接套用 "两两合并" 的暴力思路虽然可行,但时间复杂度会飙升。这道题的核心是 "优化时间复杂度",而分治思想是最优解的关键。
方法一:暴力迭代法(基础版)
1. 解题思路
基于 "合并两个升序链表" 的逻辑,遍历链表数组:先合并第 1 和第 2 个链表得到新链表,再用新链表合并第 3 个,依次类推,直到合并完所有链表。
2. 解题关键
- 🚫 空值处理:先判断链表数组是否为空,再过滤数组中的空链表(避免空指针异常),过滤后再次判断是否为空;
- 🧰 哨兵节点 + 动态指针:
cur初始指向哨兵节点,且cur.next先指向数组第一个链表,作为每轮合并的 "基础链表"; - 🔄 循环合并:
for循环遍历过滤后的链表数组,每轮调用mergeTwoLists函数,传入cur.next与当前链表,更新合并结果。
3. 代码展示
JS 版本
javascript
/**
* Definition for singly-linked list.
* function ListNode(val, next) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
*/
/**
* 合并k个升序链表(暴力迭代法)
* @param {ListNode[]} lists - 升序链表数组
* @returns {ListNode} 合并后的升序链表头节点
*/
var mergeKLists = function (lists) {
// 判空:链表数组为空直接返回null
if (lists.length === 0) return null;
// 过滤空链表:避免后续合并时出现空指针
const filterLists = lists.filter(list => list !== null);
// 过滤后仍为空,返回null
if (filterLists.length === 0) return null;
// 哨兵节点:简化边界处理
let dummy = new ListNode(-1);
// 动态指针:初始指向第一个链表,作为合并的基础
dummy.next = filterLists[0];
let cur = dummy;
// 遍历链表数组,依次合并
for (let i = 1; i < filterLists.length; i++) {
// 合并当前基础链表(cur.next)和第i个链表
cur.next = mergeTwoLists(cur.next, filterLists[i]);
}
// 返回合并后链表头节点
return dummy.next;
};
// 复用合并两个升序链表的函数
var mergeTwoLists = function (list1, list2) {
let dummy = new ListNode(-1);
let cur = dummy;
let p1 = list1, p2 = list2;
while (p1 !== null && p2 !== null) {
if (p1.val <= p2.val) {
cur.next = p1;
p1 = p1.next;
} else {
cur.next = p2;
p2 = p2.next;
}
cur = cur.next;
}
cur.next = p1 !== null ? p1 : p2;
return dummy.next;
};
JAVA 版本
java
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {
public ListNode mergeKLists(ListNode[] lists) {
// 判空:链表数组为空返回null
if (lists == null || lists.length == 0) return null;
// 过滤空链表
List<ListNode> filterLists = new ArrayList<>();
for (ListNode list : lists) {
if (list != null) {
filterLists.add(list);
}
}
// 过滤后为空返回null
if (filterLists.size() == 0) return null;
// 哨兵节点
ListNode dummy = new ListNode(-1);
dummy.next = filterLists.get(0);
ListNode cur = dummy;
// 依次合并链表
for (int i = 1; i < filterLists.size(); i++) {
cur.next = mergeTwoLists(cur.next, filterLists.get(i));
}
return dummy.next;
}
// 合并两个升序链表的函数
public ListNode mergeTwoLists(ListNode list1, ListNode list2) {
ListNode dummy = new ListNode(-1);
ListNode cur = dummy;
ListNode p1 = list1, p2 = list2;
while (p1 != null && p2 != null) {
if (p1.val <= p2.val) {
cur.next = p1;
p1 = p1.next;
} else {
cur.next = p2;
p2 = p2.next;
}
cur = cur.next;
}
cur.next = p1 != null ? p1 : p2;
return dummy.next;
}
}
方法二:分治优化法 ⚡
暴力迭代法虽然容易理解,但时间复杂度太高,面试中面试官大概率会追问 "如何优化"------ 这时候分治思想就是最优解。
1. 解题思路:先拆后合,降低时间复杂度
① 暴力法时间复杂度分析
假设 k 个链表,每个链表有 n 个节点:
- 第 1 次合并:合并 2 个链表,耗时 O (2n);
- 第 2 次合并:合并(2n)和 n,耗时 O (3n);
- ...
- 第 k-1 次合并:耗时 O (kn);总时间:
O(2n + 3n + ... + kn) = O(n*k(k+1)/2 -n) ≈ O(k²n)。举例:k=4,n=2 → 总时间≈O (16n)(22 +32 +4*2=18≈16)。
② 分治法思路
分治的核心是 "分而治之":把 k 个链表两两分组,合并后得到 k/2 个链表;再把这 k/2 个链表两两分组,合并后得到 k/4 个;直到最终合并成 1 个链表。
③ 分治法时间复杂度分析
每一轮合并的总耗时都是 O (kn)(所有节点仅遍历一次),合并轮数是log₂k(比如 k=4,轮数 = 2;k=8,轮数 = 3)。总时间:O(kn logk)。举例:k=4,n=2 → 总时间 = O (242)=O (16)(k 越大差距越明显:k=100,暴力法≈O (10000n),分治法≈O (200n))。
2. 解题关键:分治递归
- 📌 递归出口:当分治的左边界 = 右边界(
left===right),说明只剩一个链表,直接返回; - 🎯 找中点:
mid = left + Math.floor((right-left)/2),避免溢出; - ✂️ 拆分:递归拆分左半部分(
left→mid)和右半部分(mid+1→right); - 🧩 合并:调用
mergeTwoLists合并左右两部分的结果。
3. 代码展示
JS 版本
javascript
/**
* Definition for singly-linked list.
* function ListNode(val, next) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
*/
/**
* 合并k个升序链表(分治法)
* @param {ListNode[]} lists - 升序链表数组
* @returns {ListNode} 合并后的升序链表头节点
*/
var mergeKLists = function (lists) {
// 判空
if (lists.length === 0) return null;
// 过滤空链表
lists = lists.filter(list => list !== null);
// 再次判空
if (lists.length === 0) return null;
// 调用分治函数合并
return merge(lists, 0, lists.length - 1);
};
// 分治函数:拆分链表数组并合并
var merge = function (lists, left, right) {
// 递归出口:只剩一个链表,直接返回
if (left === right) {
return lists[left];
}
// 计算中点(避免溢出)
let mid = left + Math.floor((right - left) / 2);
// 递归拆分左半部分
let leftList = merge(lists, left, mid);
// 递归拆分右半部分
let rightList = merge(lists, mid + 1, right);
// 合并左右两部分
return mergeTwoLists(leftList, rightList);
}
// 复用合并两个升序链表的函数
var mergeTwoLists = function (list1, list2) {
let dummy = new ListNode(-1);
let cur = dummy;
let p1 = list1, p2 = list2;
while (p1 !== null && p2 !== null) {
if (p1.val <= p2.val) {
cur.next = p1;
p1 = p1.next;
} else {
cur.next = p2;
p2 = p2.next;
}
cur = cur.next;
}
cur.next = p1 !== null ? p1 : p2;
return dummy.next;
}
JAVA 版本
java
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {
public ListNode mergeKLists(ListNode[] lists) {
// 判空
if (lists == null || lists.length == 0) return null;
// 过滤空链表
List<ListNode> filterLists = new ArrayList<>();
for (ListNode list : lists) {
if (list != null) {
filterLists.add(list);
}
}
// 再次判空
if (filterLists.size() == 0) return null;
// 调用分治函数
return merge(filterLists, 0, filterLists.size() - 1);
}
// 分治函数
private ListNode merge(List<ListNode> lists, int left, int right) {
// 递归出口:只剩一个链表
if (left == right) {
return lists.get(left);
}
// 计算中点(避免溢出)
int mid = left + (right - left) / 2;
// 递归拆分左半部分
ListNode leftList = merge(lists, left, mid);
// 递归拆分右半部分
ListNode rightList = merge(lists, mid + 1, right);
// 合并左右部分
return mergeTwoLists(leftList, rightList);
}
// 合并两个升序链表
private ListNode mergeTwoLists(ListNode list1, ListNode list2) {
ListNode dummy = new ListNode(-1);
ListNode cur = dummy;
ListNode p1 = list1, p2 = list2;
while (p1 != null && p2 != null) {
if (p1.val <= p2.val) {
cur.next = p1;
p1 = p1.next;
} else {
cur.next = p2;
p2 = p2.next;
}
cur = cur.next;
}
cur.next = p1 != null ? p1 : p2;
return dummy.next;
}
}
面试官会问的 "灵魂拷问" 🤔
- 合并两个链表时,为什么要用哨兵节点?不用的话会有什么问题?
答:不用哨兵节点需要单独处理 "头节点为空" 的情况(比如两个链表都为空、或其中一个为空),代码会多出很多边界判断;哨兵节点统一了所有情况,让逻辑更简洁。
- 合并 k 个链表的暴力法和分治法时间复杂度差多少?为什么分治法更优?
答:暴力法是O(k²n),分治法是O(kn logk);k 越大差距越明显(比如 k=100,暴力法时间是分治法的 50 倍左右)。分治法通过 "两两合并" 减少了重复遍历的节点数,每一轮只遍历所有节点一次,轮数是对数级,因此更优。
- 分治法的空间复杂度是多少?能优化吗?
答:递归版分治法的空间复杂度是O(logk)(递归栈的深度);可以用迭代版分治(非递归)把空间复杂度降到O(1),但代码会稍复杂。
- 除了分治法,合并 k 个链表还有其他方法吗?
答:可以用优先队列(小顶堆):把每个链表的头节点加入堆,每次弹出最小节点,再把该节点的下一个节点加入堆,直到堆为空。时间复杂度也是O(kn logk),空间复杂度O(k)。
- 处理 k 个链表时,为什么要先过滤空链表?
答:避免空指针异常(比如调用val属性时),也能减少无效的合并操作,提升效率。
结语 📝
从 "合并两个升序链表" 到 "合并 k 个升序链表",核心逻辑始终是 "两两合并",区别只在于 "如何组织两两合并的顺序"------ 暴力法是 "顺序合并",分治法是 "分组合并"。
这两道题的价值不仅在于解题本身,更在于理解 "哨兵节点简化边界""双指针遍历""分治优化时间复杂度" 这些通用的算法思想。掌握这些思想,再遇到链表相关的变形题(比如合并有序数组、拆分链表等),也能举一反三✨。