3483. 2的幂次方(上海交通大学考研机试题目)

3483. 2的幂次方

⭐️难度:中等

⭐️类型:分治、递归

📖题目:题目链接

输入样例:

1315

输出样例:

2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)

🌟思路:

以题目例子为例:

总结:

1、只包含指数为0,1,2的数,

2、指数1不用写出来,

不难发现问题的解决符合:大问题拆分成若干相似的小问题,符合分治法 的思想。

步骤:

1️⃣先获得n的2指数形式

把数字转化成机器数,不难看出,获得任何一个数的2指数形式,只需要知道机器数中哪些比特是1

只需要与1相与,就能得出哪些比特是1。

n最大为20000,所以与n 相与机器数 最多是1000000000000000(15个0)

214=16384,215=32768

所以:214<20000<215

cpp 复制代码
string Get2sExponet(int n) {
    vector<int> exp;
    for (int i = 15;i >= 0;i--) {  // 先压入高次幂
        if ((n & (1 << i)) != 0) {
            exp.push_back(i);
        }
    }
    // n = 2^(exp[0] + 2^(exp[1]) + ... + 2^(exp[size - 1])
}

2️⃣构建结果字符串

每一个黑色部分都是一个小问题,

cpp 复制代码
tring Get2sExponet(int n) {
    if (n == 0) {
        return "0";
    }
    
    /*vector<int> exp;
    for (int i = 15; i >= 0; --i) {
        if ((n & (1 << i)) != 0) {
            exp.push_back(i);
        }
    }*/
    // n = 2^(exp[0]) + 2^(exp[1]) + ... + 2^(exp[size-1])
    
    string res = "";
    for (int i = 0; i < exp.size(); ++i) {
        if (i != 0) {
            res += "+";
        }
        if (exp[i] == 1) {  // 特殊:2^1^不用加()
            res += "2";
        }
        else {
            res += "2(" + Get2sExponet(exp[i]) + ")";
        }
    }
    return res;
}

📚题解:

cpp 复制代码
#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<string.h>
#include<vector>  // vector不需要.h
#include<list>
#include<set>  // // 可以用 set 和 multiset
#include<unordered_set> // 可以用 unordered_set 和 unordered_multiset
#include<map>  // 可以用 map 和 multimap
#include<unordered_map> // 可以用 unordered_map 和 unordered_multimap
#include<algorithm>
#include<string>
#include<iostream>
#include<queue>
#include<stack>

using namespace std;

string Get2sExponet(int n) {
    if (n == 0) {
        return "0";  // 2^0^递归出口,0的次方不存在,返回本身
    }

    vector<int> exp;
    for (int i = 15; i >= 0; --i) {
        if ((n & (1 << i)) != 0) {  // 先压高次幂
            exp.push_back(i);
        }
    }
    // n = 2^(exp[0]) + 2^(exp[1]) + ... + 2^(exp[size-1])

    string res = "";
    for (int i = 0; i < exp.size(); ++i) {
        if (i != 0) {
            res += "+";
        }
        if (exp[i] == 1) {  // 2^1^递归出口,不用加()
            res += "2";
        }
        else { 
            res += "2(" + Get2sExponet(exp[i]) + ")";
        }
    }
    return res;
}
int main() {
    int n;
    while (scanf("%d", &n) != EOF) {
        printf("%s\n", Get2sExponet(n).c_str());
    }
  

    return 0;
}
相关推荐
代码不停4 天前
递归题目练习
java·算法·递归
少许极端5 天前
算法奇妙屋(二十九)-递归、回溯与剪枝的综合问题 2
算法·深度优先·剪枝·回溯·递归
老鼠只爱大米6 天前
LeetCode经典算法面试题 #22:括号生成(回溯法、动态规划、闭合数法等五种实现方案解析)
算法·leetcode·动态规划·递归·回溯算法·卡特兰数·括号生成
码农幻想梦7 天前
3483. 2的幂次方(上海交通大学考研机试题)
分治
I_LPL7 天前
day21 代码随想录算法训练营 二叉树专题8
算法·二叉树·递归
少许极端7 天前
算法奇妙屋(二十八)-递归、回溯与剪枝的综合问题 1
java·算法·深度优先·剪枝·回溯·递归
2401_841495648 天前
【LeetCode刷题】二叉树的直径
数据结构·python·算法·leetcode·二叉树··递归
码农幻想梦8 天前
821. 跳台阶
递归
2401_8414956411 天前
【LeetCode刷题】对称二叉树
数据结构·python·算法·leetcode·二叉树··递归