Pytorch个人学习记录总结 08

目录

神经网络-搭建小实战和Sequential的使用

版本1------未用Sequential

版本2------用Sequential


神经网络-搭建小实战和Sequential的使用

  1. torch.nn.Sequential官方文档地址,模块将按照它们在构造函数中传递的顺序添加。
  2. 代码实现的是下图:

版本1------未用Sequential

python 复制代码
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear


class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        # 3,32,32 ---> 32,32,32
        self.conv1 = Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2)
        # 32,32,32 ---> 32,16,16
        self.maxpool1 = MaxPool2d(kernel_size=2, stride=2)
        # 32,16,16 ---> 32,16,16
        self.conv2 = Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2)
        # 32,16,16 ---> 32,8,8
        self.maxpool2 = MaxPool2d(kernel_size=2, stride=2)
        # 32,8,8 ---> 64,8,8
        self.conv3 = Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2)
        # 64,8,8 ---> 64,4,4
        self.maxpool3 = MaxPool2d(kernel_size=2, stride=2)
        # 64,4,4 ---> 1024
        self.flatten = Flatten()  # 因为start_dim默认为1,所以可不再另外设置
        # 1024 ---> 64
        self.linear1 = Linear(1024, 64)
        # 64 ---> 10
        self.linear2 = Linear(64, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.conv3(x)
        x = self.maxpool3(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x


model = Model()
print(model)

input = torch.ones((64, 3, 32, 32))
out = model(input)
print(out.shape)	# torch.Size([64, 10])

版本2------用Sequential

代码更简洁,而且会给每层自动从0开始编序。

python 复制代码
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential


class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.model = Sequential(
            Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2, stride=2),
            Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2, stride=2),
            Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2, stride=2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, x):
        return self.model(x)


model = Model()
print(model)

input = torch.ones((64, 3, 32, 32))
out = model(input)
print(out.shape)	# torch.Size([64, 10])

在代码最末尾加上writer.add_gragh(model, input)就可看到模型计算图,可放大查看。

python 复制代码
writer = SummaryWriter('./logs/Seq')
writer.add_graph(model, input)
writer.close()
相关推荐
Sherry Wangs1 天前
显卡算力过高导致PyTorch不兼容的救赎指南
人工智能·pytorch·显卡
小叮当⇔1 天前
PYcharm——获取天气
ide·python·pycharm
Apache Flink1 天前
阿里云、Ververica、Confluent、Linkedin携手推进流式创新,共筑智能体AI未来
人工智能·阿里云·云计算
Elastic 中国社区官方博客1 天前
AI Agent 评估:Elastic 如何测试代理框架
大数据·人工智能·elasticsearch·搜索引擎
霍志杰1 天前
记一次csv和xlsx之间的转换处理
python
中科米堆1 天前
中科米堆CASAIM自动化三维测量实现注塑模具快速尺寸测量
运维·人工智能·自动化
CoookeCola1 天前
Google Landmarks Dataset v2 (GLDv2):面向实例级识别与检索的500万图像,200k+类别大规模地标识别基准
图像处理·人工智能·学习·目标检测·计算机视觉·视觉检测
syt_biancheng1 天前
C++ 多态(1)
jvm·c++·学习
测试19981 天前
Jmeter是如何实现接口关联的?
自动化测试·软件测试·python·测试工具·jmeter·职场和发展·接口测试
ue星空1 天前
逆向分析光与影:33号远征队使用的UE技术栈
笔记·学习