Pytorch个人学习记录总结 08

目录

神经网络-搭建小实战和Sequential的使用

版本1------未用Sequential

版本2------用Sequential


神经网络-搭建小实战和Sequential的使用

  1. torch.nn.Sequential官方文档地址,模块将按照它们在构造函数中传递的顺序添加。
  2. 代码实现的是下图:

版本1------未用Sequential

python 复制代码
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear


class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        # 3,32,32 ---> 32,32,32
        self.conv1 = Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2)
        # 32,32,32 ---> 32,16,16
        self.maxpool1 = MaxPool2d(kernel_size=2, stride=2)
        # 32,16,16 ---> 32,16,16
        self.conv2 = Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2)
        # 32,16,16 ---> 32,8,8
        self.maxpool2 = MaxPool2d(kernel_size=2, stride=2)
        # 32,8,8 ---> 64,8,8
        self.conv3 = Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2)
        # 64,8,8 ---> 64,4,4
        self.maxpool3 = MaxPool2d(kernel_size=2, stride=2)
        # 64,4,4 ---> 1024
        self.flatten = Flatten()  # 因为start_dim默认为1,所以可不再另外设置
        # 1024 ---> 64
        self.linear1 = Linear(1024, 64)
        # 64 ---> 10
        self.linear2 = Linear(64, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.conv3(x)
        x = self.maxpool3(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x


model = Model()
print(model)

input = torch.ones((64, 3, 32, 32))
out = model(input)
print(out.shape)	# torch.Size([64, 10])

版本2------用Sequential

代码更简洁,而且会给每层自动从0开始编序。

python 复制代码
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential


class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.model = Sequential(
            Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2, stride=2),
            Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2, stride=2),
            Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2, stride=2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, x):
        return self.model(x)


model = Model()
print(model)

input = torch.ones((64, 3, 32, 32))
out = model(input)
print(out.shape)	# torch.Size([64, 10])

在代码最末尾加上writer.add_gragh(model, input)就可看到模型计算图,可放大查看。

python 复制代码
writer = SummaryWriter('./logs/Seq')
writer.add_graph(model, input)
writer.close()
相关推荐
万兴丶2 小时前
批量转换音频格式工具
python
galaxylove2 小时前
Gartner预测2026年(二):驾驭中国的人工智能驱动变革
人工智能
GISer_Jing2 小时前
JD AI全景:未来三年带动形成万亿规模的人工智能生态
前端·人工智能·aigc
大学就业之家2 小时前
智能选岗的陷阱与应对策略
python
chenshi17812 小时前
安全合规:使用 RPA 批量发布时,如何规避平台封禁风险,实现长效稳定的投喂?
python
全栈陈序员2 小时前
你对 SPA 单页面应用的理解?它的优缺点分别是什么?如何实现 SPA 应用?
前端·vue.js·学习·前端框架·vue
liulanba2 小时前
机器学习评估指标详解 - 高级篇
人工智能·机器学习
许泽宇的技术分享2 小时前
当AI Agent学会“打电话“——微软Agent Framework的A2A与AGUI协议深度解析
人工智能·microsoft·a2a协议·ai多智能体·agui
Qt学视觉2 小时前
PaddlePaddle-2wget下载安装
c++·人工智能·paddlepaddle
雪花desu2 小时前
大模型应用评估—— 从 BLEU 到 Agent 综合评价
人工智能·深度学习·神经网络·语言模型