Pytorch个人学习记录总结 08

目录

神经网络-搭建小实战和Sequential的使用

版本1------未用Sequential

版本2------用Sequential


神经网络-搭建小实战和Sequential的使用

  1. torch.nn.Sequential官方文档地址,模块将按照它们在构造函数中传递的顺序添加。
  2. 代码实现的是下图:

版本1------未用Sequential

python 复制代码
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear


class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        # 3,32,32 ---> 32,32,32
        self.conv1 = Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2)
        # 32,32,32 ---> 32,16,16
        self.maxpool1 = MaxPool2d(kernel_size=2, stride=2)
        # 32,16,16 ---> 32,16,16
        self.conv2 = Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2)
        # 32,16,16 ---> 32,8,8
        self.maxpool2 = MaxPool2d(kernel_size=2, stride=2)
        # 32,8,8 ---> 64,8,8
        self.conv3 = Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2)
        # 64,8,8 ---> 64,4,4
        self.maxpool3 = MaxPool2d(kernel_size=2, stride=2)
        # 64,4,4 ---> 1024
        self.flatten = Flatten()  # 因为start_dim默认为1,所以可不再另外设置
        # 1024 ---> 64
        self.linear1 = Linear(1024, 64)
        # 64 ---> 10
        self.linear2 = Linear(64, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.conv3(x)
        x = self.maxpool3(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x


model = Model()
print(model)

input = torch.ones((64, 3, 32, 32))
out = model(input)
print(out.shape)	# torch.Size([64, 10])

版本2------用Sequential

代码更简洁,而且会给每层自动从0开始编序。

python 复制代码
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential


class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.model = Sequential(
            Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2, stride=2),
            Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2, stride=2),
            Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2, stride=2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, x):
        return self.model(x)


model = Model()
print(model)

input = torch.ones((64, 3, 32, 32))
out = model(input)
print(out.shape)	# torch.Size([64, 10])

在代码最末尾加上writer.add_gragh(model, input)就可看到模型计算图,可放大查看。

python 复制代码
writer = SummaryWriter('./logs/Seq')
writer.add_graph(model, input)
writer.close()
相关推荐
张小生180几秒前
PyCharm中 argparse 库 的使用方法
python·pycharm
秃头佛爷1 分钟前
Python使用PDF相关组件案例详解
python
Dxy12393102162 分钟前
python下载pdf
数据库·python·pdf
叶知安3 分钟前
如何用pycharm连接sagemath?
ide·python·pycharm
weixin_432702267 分钟前
代码随想录算法训练营第五十五天|图论理论基础
数据结构·python·算法·深度优先·图论
BSV区块链8 分钟前
如何在BSV区块链上实现可验证AI
人工智能·区块链
菜鸟清风14 分钟前
ChromeDriver下载地址
python
武子康25 分钟前
大数据-212 数据挖掘 机器学习理论 - 无监督学习算法 KMeans 基本原理 簇内误差平方和
大数据·人工智能·学习·算法·机器学习·数据挖掘
deephub26 分钟前
Tokenformer:基于参数标记化的高效可扩展Transformer架构
人工智能·python·深度学习·架构·transformer
Q81375746031 分钟前
数据挖掘在金融交易中的应用:民锋科技的智能化布局
人工智能·科技·数据挖掘