Pytorch个人学习记录总结 08

目录

神经网络-搭建小实战和Sequential的使用

版本1------未用Sequential

版本2------用Sequential


神经网络-搭建小实战和Sequential的使用

  1. torch.nn.Sequential官方文档地址,模块将按照它们在构造函数中传递的顺序添加。
  2. 代码实现的是下图:

版本1------未用Sequential

python 复制代码
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear


class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        # 3,32,32 ---> 32,32,32
        self.conv1 = Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2)
        # 32,32,32 ---> 32,16,16
        self.maxpool1 = MaxPool2d(kernel_size=2, stride=2)
        # 32,16,16 ---> 32,16,16
        self.conv2 = Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2)
        # 32,16,16 ---> 32,8,8
        self.maxpool2 = MaxPool2d(kernel_size=2, stride=2)
        # 32,8,8 ---> 64,8,8
        self.conv3 = Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2)
        # 64,8,8 ---> 64,4,4
        self.maxpool3 = MaxPool2d(kernel_size=2, stride=2)
        # 64,4,4 ---> 1024
        self.flatten = Flatten()  # 因为start_dim默认为1,所以可不再另外设置
        # 1024 ---> 64
        self.linear1 = Linear(1024, 64)
        # 64 ---> 10
        self.linear2 = Linear(64, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.conv3(x)
        x = self.maxpool3(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x


model = Model()
print(model)

input = torch.ones((64, 3, 32, 32))
out = model(input)
print(out.shape)	# torch.Size([64, 10])

版本2------用Sequential

代码更简洁,而且会给每层自动从0开始编序。

python 复制代码
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential


class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.model = Sequential(
            Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2, stride=2),
            Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2, stride=2),
            Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2, stride=2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, x):
        return self.model(x)


model = Model()
print(model)

input = torch.ones((64, 3, 32, 32))
out = model(input)
print(out.shape)	# torch.Size([64, 10])

在代码最末尾加上writer.add_gragh(model, input)就可看到模型计算图,可放大查看。

python 复制代码
writer = SummaryWriter('./logs/Seq')
writer.add_graph(model, input)
writer.close()
相关推荐
Dovis(誓平步青云)1 分钟前
深挖 DeepSeek 隐藏玩法·智能炼金术2.0版本
人工智能·深度学习·机器学习·数据挖掘·服务发现·智慧城市
软件测试曦曦1 分钟前
如何使用Python自动化测试工具Selenium进行网页自动化?
自动化测试·软件测试·python·功能测试·测试工具·程序人生·自动化
陈明勇3 分钟前
一文掌握 MCP 上下文协议:从理论到实践
人工智能·后端·mcp
zskj_zhyl4 分钟前
智绅科技全场景智慧养老系统:助力老年人畅享幸福晚年
人工智能·科技
weixin_3875456412 分钟前
探索 GitHub Copilot:当 AI 成为你的贴身编码助手
人工智能·github·copilot
zidea12 分钟前
我和我的 AI Agent(1) 异步优先、结构化输出以及如何处理依赖
人工智能·python·trae
ZTLJQ13 分钟前
基于机器学习的三国时期诸葛亮北伐失败因素量化分析
人工智能·算法·机器学习
Cynthia的梦20 分钟前
Linux学习-Linux进程间通信(IPC)聊天程序实践指南
linux·运维·学习
满怀101540 分钟前
Python入门(5):异常处理
开发语言·python
莓事哒40 分钟前
使用pytesseract和Cookie登录古诗文网~(python爬虫)
爬虫·python·pycharm·cookie·pytessarct