回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测

回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测

目录

    • [回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测](#回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测)

预测效果








基本介绍

MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测(完整源码和数据)

1.MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测(完整源码和数据)

2.输入多个特征,输出单个变量,多输入单输出回归预测;

3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;

4.蛇群算法优化参数为:学习率,隐含层节点,正则化参数;

5.excel数据,方便替换,运行环境2020及以上。

模型描述

POA-CNN-BiLSTM鹈鹕算法是一种用于回归预测的神经网络模型,它结合了卷积神经网络(CNN)、双向长短期记忆神经网络(BiLSTM)和多输入单输出的架构。

在这个模型中,卷积神经网络用于从输入数据中提取特征,双向长短期记忆神经网络用于处理序列数据,并且多输入单输出的架构可以同时处理多个输入变量并输出一个预测结果。这个模型的名称中的"鹈鹕"指的是一种候鸟,可能是因为这个模型可以处理多个输入变量,就像候鸟可以飞行和浮游。

优化这个模型的方法可以包括以下几个方面:

数据预处理:对输入数据进行预处理可以提高模型的性能。可以进行数据归一化、标准化,或者进行特征选择和降维等操作,以减少输入数据的维度和噪声,从而更好地提取特征。

超参数调优:选择合适的超参数可以提高模型的性能。

正则化:使用正则化技术可以减少模型的过拟合。可以使用L1、L2正则化、dropout等技术来避免模型过度拟合训练数据。

综上所述,优化POA-CNN-BiLSTM鹈鹕算法可以通过多种方法进行,通过这些方法的结合可以提高模型的性能和泛化能力,从而更好地预测回归结果。

基于卷积神经网络和双向长短期记忆(BiLSTM)神经网络的深度学习网络结构。采用特征融合的方法,通过卷积网络提取出浅层特征与深层特征并进行联接,对特征通过卷积进行融合,将获得的矢量信息输入BiLSTM单元。

程序设计

clike 复制代码
%%  获取最优种群
   for j = 1 : SearchAgents
       if(fitness_new(j) < GBestF)
          GBestF = fitness_new(j);
          GBestX = X_new(j, :);
       end
   end
   
%%  更新种群和适应度值
   pop_new = X_new;
   fitness = fitness_new;

%%  更新种群 
   [fitness, index] = sort(fitness);
   for j = 1 : SearchAgents
      pop_new(j, :) = pop_new(index(j), :);
   end

%%  得到优化曲线
   curve(i) = GBestF;
   avcurve(i) = sum(curve) / length(curve);
end

%%  得到最优值
Best_pos = GBestX;
Best_score = curve(end);

%%  得到最优参数
NumOfUnits       =abs(round( Best_pos(1,3)));       % 最佳神经元个数
InitialLearnRate =  Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
% 
inputSize = k;
outputSize = 1;  %数据输出y的维度  
%  参数设置
opts = trainingOptions('adam', ...                    % 优化算法Adam
    'MaxEpochs', 20, ...                              % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', InitialLearnRate, ...         % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod', 6, ...                     % 训练次后开始调整学习率
    'LearnRateDropFactor',0.2, ...                    % 学习率调整因子
    'L2Regularization', L2Regularization, ...         % 正则化参数
    'ExecutionEnvironment', 'gpu',...                 % 训练环境
    'Verbose', 0, ...                                 % 关闭优化过程
    'SequenceLength',1,...
    'MiniBatchSize',10,...
    'Plots', 'training-progress');                    % 画出曲线

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501

[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
机器学习之心2 天前
粒子群优化双向深度学习!PSO-BiTCN-BiGRU-Attention多输入单输出回归预测
人工智能·深度学习·回归·多输入单输出回归预测·pso-bitcn-bigru
机器学习之心4 天前
回归预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入单输出回归预测
随机森林·matlab·回归·多输入单输出回归预测·rf-adaboost
机器学习之心1 个月前
回归预测 | Matlab基于SABO-SVR减法平均算法优化支持向量机的数据多输入单输出回归预测
支持向量机·matlab·回归·多输入单输出回归预测·减法平均算法·sabo-svr
机器学习之心1 个月前
回归预测 | Matlab基于POA-SVR鹈鹕算法优化支持向量机的数据多输入单输出回归预测
多输入单输出回归预测·poa-svr·鹈鹕算法优化支持向量机
机器学习之心2 个月前
回归预测 | Matlab实现BES-ESN秃鹰搜索算法优化回声状态网络多输入单输出回归预测
matlab·回归·多输入单输出回归预测·回声状态网络·bes-esn·秃鹰搜索算法优化
机器学习之心5 个月前
回归预测 | Matlab实现GWO-ESN基于灰狼算法优化回声状态网络的多输入单输出回归预测
多输入单输出回归预测·gwo-esn·灰狼算法优化回声状态网络
机器学习之心6 个月前
回归预测 | Matlab实现NGO-ESN北方苍鹰算法优化回声状态网络多输入单输出回归预测
多输入单输出回归预测·北方苍鹰算法优化·回声状态网络·ngo-esn
机器学习之心7 个月前
回归预测 | Matlab基于RIME-SVR霜冰算法优化支持向量机的数据多输入单输出回归预测
支持向量机·多输入单输出回归预测·霜冰算法优化·rime-svr
机器学习之心7 个月前
独家原创 | Matlab实现INFO-BiTCN-BiGRU-Attention多输入单输出回归预测
多输入单输出回归预测·attention·bitcn-bigru·info·向量加权
机器学习之心7 个月前
回归预测 | Matlab基于CPO-GPR基于冠豪猪算法优化高斯过程回归的多输入单输出回归预测
多输入单输出回归预测·冠豪猪算法优化·cpo-gpr·高斯过程回归