pytorch实现一个简单的CNN

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms

# Define the CNN model
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, 3, padding=1)
        self.relu1 = nn.ReLU()
        self.pool1 = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
        self.relu2 = nn.ReLU()
        self.pool2 = nn.MaxPool2d(2, 2)
        self.conv3 = nn.Conv2d(64, 64, 3, padding=1)
        self.relu3 = nn.ReLU()
        self.flatten = nn.Flatten()
        self.fc1 = nn.Linear(64 * 7 * 7, 64)
        self.relu4 = nn.ReLU()
        self.fc2 = nn.Linear(64, 10)

    def forward(self, x):
        x = self.pool1(self.relu1(self.conv1(x)))
        x = self.pool2(self.relu2(self.conv2(x)))
        x = self.relu3(self.conv3(x))
        x = self.flatten(x)
        x = self.relu4(self.fc1(x))
        x = self.fc2(x)
        return x

# Load Fashion MNIST dataset
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
train_dataset = torchvision.datasets.FashionMNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = torchvision.datasets.FashionMNIST(root='./data', train=False, download=True, transform=transform)

train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)

# Initialize the CNN model
model = CNN()

# Define loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# Train the model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)

epochs = 5
for epoch in range(epochs):
    running_loss = 0.0
    for i, data in enumerate(train_loader, 0):
        inputs, labels = data[0].to(device), data[1].to(device)

        optimizer.zero_grad()

        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()

    print(f'Epoch {epoch + 1}, Loss: {running_loss / len(train_loader)}')

print("Training finished!")

# Evaluate the model
correct = 0
total = 0
with torch.no_grad():
    for data in test_loader:
        images, labels = data[0].to(device), data[1].to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print(f"Accuracy on the test set: {100 * correct / total}%")
相关推荐
2501_924879362 小时前
口罩识别场景误报率↓79%:陌讯多模态融合算法实战解析
人工智能·深度学习·算法·目标检测·智慧城市
万粉变现经纪人2 小时前
如何解决pip安装报错ModuleNotFoundError: No module named ‘keras’问题
人工智能·python·深度学习·scrapy·pycharm·keras·pip
FL16238631293 小时前
室内液体撒漏泄漏识别分割数据集labelme格式2576张1类别
人工智能·深度学习
LetsonH6 小时前
⭐CVPR2025 MatAnyone:稳定且精细的视频抠图新框架
人工智能·python·深度学习·计算机视觉·音视频
格林威6 小时前
Baumer相机如何通过YoloV8深度学习模型实现工厂自动化产线牛奶瓶盖实时装配的检测识别(C#代码UI界面版)
人工智能·深度学习·数码相机·yolo·机器学习·计算机视觉·c#
宋大水7 小时前
【大作业-12】草莓成熟度检测模型,YOLO+PyQt+MySQL
数据库·深度学习·mysql·yolo·目标检测·pyqt·课程设计
wangjun51598 小时前
人工智能、机器学习、深度学习、大模型、智能体知识点汇总
人工智能·深度学习·机器学习
一年春又来8 小时前
AI-03a1.Python深度学习-Tensorflow和Keras入门
人工智能·深度学习·tensorflow
FL16238631299 小时前
电线杆损坏倒塌断裂分割数据集labelme格式2597张1类别
人工智能·深度学习
unicrom_深圳市由你创科技9 小时前
用 PyTorch 实现一个简单的神经网络:从数据到预测
人工智能·pytorch·神经网络