6.5 池化层

是什么:池化层跟卷积层类似有个滑动窗口,用来取一个区域内的最大值或者平均值。

作用:卷积神经网络的最后的部分应该要看到整个图像的全局,通过池化(汇聚)操作,逐渐汇聚要取的像素,最终实现学习全局表示的目标。同时,卷积层的所有优势也被保留在了中间层。

特点:

1.降低卷积层读对位置的敏感性。(优点)

2.降低对空间降采样表示的敏感性。(优点)

3.池化层的输入通道和输出通道相同,如X的形状为[1,2,4,4],1代表样本数,第二个值:2,代表通道为2,所以输出的结果通道仍然为2,输出结果应该为[1,2,计算后的w,计算后的H]

4.使用最大汇聚层以及大于1的步幅,可以减少输出结果的空间维度(如高度和宽度)。

解释:因为池化是选出一个区域的作最大值或平均值,所以取池化区域内的像素时不依赖像素的位置。因为池化层往往在卷积层的后面,所以池化层可以降低卷积层对位置的敏感性。同样也可以降低空间降采样的敏感性。

池化后的输出形状

W = (行数 - 池化行数 + 1 + 池化行方向步长) / 池化行方向步长

H = (列数 - 池化列数 + 1 + 池化列方向步长) / 池化列方向步长

一.单通道池化

python 复制代码
import torch
from torch import nn
from d2l import torch as d2l

池化层的前向传播函数

python 复制代码
def pool2d(X,pool_size,mode='max'):
    p_h,p_w = pool_size
    # 池化层与卷积层类似,池化后的输出形状计算方法根卷积一样
    Y = torch.zeros((X.shape[0] - p_h + 1,X.shape[1]-p_w+1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            if mode=='max':
                Y[i,j] = X[i:i+p_h,j:j+p_w].max()
            elif mode=='avg':
                Y[i,j] = X[i:i+p_h,j:j+p_w].mean()
    return Y
python 复制代码
X = torch.tensor([[0.0, 1.0, 2.0],
                  [3.0, 4.0, 5.0],
                  [6.0, 7.0, 8.0]])
print(pool2d(X, (2, 2)))
print(pool2d(X, (2, 2),'avg'))
python 复制代码
tensor([[4., 5.],
        [7., 8.]])
tensor([[2., 3.],
        [5., 6.]])

池化层的填充和步幅

python 复制代码
X = torch.arange(16,dtype=torch.float32)
print(X)
python 复制代码
tensor([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10., 11., 12., 13.,
        14., 15.])
python 复制代码
#(样本数,通道数,行数,列数)
X = X.reshape((1,1,4,4))
print(X)
python 复制代码
tensor([[[[ 0.,  1.,  2.,  3.],
          [ 4.,  5.,  6.,  7.],
          [ 8.,  9., 10., 11.],
          [12., 13., 14., 15.]]]])

默认步幅与池化窗口相同,当使用3x3的池化窗口,步幅也是3x3

python 复制代码
pool2d = nn.MaxPool2d(3)
pool2d(X)
python 复制代码
tensor([[[[10.]]]])

手动设置池化尺寸

python 复制代码
pool2d = nn.MaxPool2d((2,3),stride=(2,3),padding=(0,1))
pool2d(X)
python 复制代码
tensor([[[[ 5.,  7.],
          [13., 15.]]]])

二.多通道池化

手动设置池化尺寸

python 复制代码
pool2d = nn.MaxPool2d((2,3),stride=(2,3),padding=(0,1))
pool2d(X)
python 复制代码
输出:
tensor([[[[ 5.,  7.],
          [13., 15.]]]])

多通道池化,X的原shape = (1,1,4,4),下句是在第二个维度上增加一个4x4的矩阵 形状变成 (1,2,4,4)

python 复制代码
X = torch.cat((X,X+1),1)
print(X)
print(X.shape)
python 复制代码
tensor([[[[ 0.,  1.,  2.,  3.],
          [ 4.,  5.,  6.,  7.],
          [ 8.,  9., 10., 11.],
          [12., 13., 14., 15.]],

         [[ 1.,  2.,  3.,  4.],
          [ 5.,  6.,  7.,  8.],
          [ 9., 10., 11., 12.],
          [13., 14., 15., 16.]]]])
torch.Size([1, 2, 4, 4])
python 复制代码
pool2d = nn.MaxPool2d(3,padding=1,stride=2)
X = pool2d(X)
print(X)
print(X.shape) # 池化不像卷积那样每个通道的结果要合在一起,所以池化层的输入通道和输出通道相同
python 复制代码
tensor([[[[ 5.,  7.],
          [13., 15.]],

         [[ 6.,  8.],
          [14., 16.]]]])
# 池化层的输入通道和输出通道相同,X的通道为2,所以输出的结果通道仍然为2,下面第一个1是样本数,第二个值是通道数
torch.Size([1, 2, 2, 2])
相关推荐
美狐美颜sdk21 小时前
Android直播美颜SDK:选择指南与开发方案
android·人工智能·计算机视觉·第三方美颜sdk·视频美颜sdk·人脸美型sdk
AI人工智能+21 小时前
智能表格识别技术:通过深度学习与版面分析相结合,解决传统OCR在复杂表格处理中的局限性
深度学习·ocr·表格识别
Lian_Ge_Blog21 小时前
知识蒸馏学习总结
人工智能·深度学习
2401_8414956421 小时前
【机器学习】人工神经网络(ANN)
人工智能·python·深度学习·神经网络·机器学习·特征学习·非线性映射
薛不痒21 小时前
深度学习之神经网络的构建和实现
人工智能·深度学习·神经网络
sali-tec21 小时前
C# 基于OpenCv的视觉工作流-章7-膨胀
图像处理·人工智能·opencv·算法·计算机视觉
jrlong21 小时前
HappyLLM task12 大模型训练流程实践
人工智能·深度学习·机器学习
杜子不疼.1 天前
计算机视觉热门模型手册:Spring Boot 3.2 自动装配新机制:@AutoConfiguration 使用指南
人工智能·spring boot·计算机视觉
小途软件1 天前
用于机器人电池电量预测的Sarsa强化学习混合集成方法
java·人工智能·pytorch·python·深度学习·语言模型
哥布林学者1 天前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (五)门控循环单元 GRU
深度学习·ai