6.5 池化层

是什么:池化层跟卷积层类似有个滑动窗口,用来取一个区域内的最大值或者平均值。

作用:卷积神经网络的最后的部分应该要看到整个图像的全局,通过池化(汇聚)操作,逐渐汇聚要取的像素,最终实现学习全局表示的目标。同时,卷积层的所有优势也被保留在了中间层。

特点:

1.降低卷积层读对位置的敏感性。(优点)

2.降低对空间降采样表示的敏感性。(优点)

3.池化层的输入通道和输出通道相同,如X的形状为[1,2,4,4],1代表样本数,第二个值:2,代表通道为2,所以输出的结果通道仍然为2,输出结果应该为[1,2,计算后的w,计算后的H]

4.使用最大汇聚层以及大于1的步幅,可以减少输出结果的空间维度(如高度和宽度)。

解释:因为池化是选出一个区域的作最大值或平均值,所以取池化区域内的像素时不依赖像素的位置。因为池化层往往在卷积层的后面,所以池化层可以降低卷积层对位置的敏感性。同样也可以降低空间降采样的敏感性。

池化后的输出形状

W = (行数 - 池化行数 + 1 + 池化行方向步长) / 池化行方向步长

H = (列数 - 池化列数 + 1 + 池化列方向步长) / 池化列方向步长

一.单通道池化

python 复制代码
import torch
from torch import nn
from d2l import torch as d2l

池化层的前向传播函数

python 复制代码
def pool2d(X,pool_size,mode='max'):
    p_h,p_w = pool_size
    # 池化层与卷积层类似,池化后的输出形状计算方法根卷积一样
    Y = torch.zeros((X.shape[0] - p_h + 1,X.shape[1]-p_w+1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            if mode=='max':
                Y[i,j] = X[i:i+p_h,j:j+p_w].max()
            elif mode=='avg':
                Y[i,j] = X[i:i+p_h,j:j+p_w].mean()
    return Y
python 复制代码
X = torch.tensor([[0.0, 1.0, 2.0],
                  [3.0, 4.0, 5.0],
                  [6.0, 7.0, 8.0]])
print(pool2d(X, (2, 2)))
print(pool2d(X, (2, 2),'avg'))
python 复制代码
tensor([[4., 5.],
        [7., 8.]])
tensor([[2., 3.],
        [5., 6.]])

池化层的填充和步幅

python 复制代码
X = torch.arange(16,dtype=torch.float32)
print(X)
python 复制代码
tensor([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10., 11., 12., 13.,
        14., 15.])
python 复制代码
#(样本数,通道数,行数,列数)
X = X.reshape((1,1,4,4))
print(X)
python 复制代码
tensor([[[[ 0.,  1.,  2.,  3.],
          [ 4.,  5.,  6.,  7.],
          [ 8.,  9., 10., 11.],
          [12., 13., 14., 15.]]]])

默认步幅与池化窗口相同,当使用3x3的池化窗口,步幅也是3x3

python 复制代码
pool2d = nn.MaxPool2d(3)
pool2d(X)
python 复制代码
tensor([[[[10.]]]])

手动设置池化尺寸

python 复制代码
pool2d = nn.MaxPool2d((2,3),stride=(2,3),padding=(0,1))
pool2d(X)
python 复制代码
tensor([[[[ 5.,  7.],
          [13., 15.]]]])

二.多通道池化

手动设置池化尺寸

python 复制代码
pool2d = nn.MaxPool2d((2,3),stride=(2,3),padding=(0,1))
pool2d(X)
python 复制代码
输出:
tensor([[[[ 5.,  7.],
          [13., 15.]]]])

多通道池化,X的原shape = (1,1,4,4),下句是在第二个维度上增加一个4x4的矩阵 形状变成 (1,2,4,4)

python 复制代码
X = torch.cat((X,X+1),1)
print(X)
print(X.shape)
python 复制代码
tensor([[[[ 0.,  1.,  2.,  3.],
          [ 4.,  5.,  6.,  7.],
          [ 8.,  9., 10., 11.],
          [12., 13., 14., 15.]],

         [[ 1.,  2.,  3.,  4.],
          [ 5.,  6.,  7.,  8.],
          [ 9., 10., 11., 12.],
          [13., 14., 15., 16.]]]])
torch.Size([1, 2, 4, 4])
python 复制代码
pool2d = nn.MaxPool2d(3,padding=1,stride=2)
X = pool2d(X)
print(X)
print(X.shape) # 池化不像卷积那样每个通道的结果要合在一起,所以池化层的输入通道和输出通道相同
python 复制代码
tensor([[[[ 5.,  7.],
          [13., 15.]],

         [[ 6.,  8.],
          [14., 16.]]]])
# 池化层的输入通道和输出通道相同,X的通道为2,所以输出的结果通道仍然为2,下面第一个1是样本数,第二个值是通道数
torch.Size([1, 2, 2, 2])
相关推荐
低音钢琴33 分钟前
【人工智能系列:走近人工智能05】基于 PyTorch 的机器学习开发与部署实战
人工智能·pytorch·机器学习
ShiMetaPi3 小时前
ShimetaPi丨事件相机新版SDK发布:支持Python调用,可降低使用门槛
深度学习·计算机视觉·事件相机·evs
南方的狮子先生4 小时前
【深度学习】卷积神经网络(CNN)入门:看图识物不再难!
人工智能·笔记·深度学习·神经网络·机器学习·cnn·1024程序员节
「QT(C++)开发工程师」5 小时前
VTK开源视觉库 | 行业应用第一篇
linux·qt·物联网·计算机视觉·信息可视化·vtk
howard20055 小时前
神经网络初探
深度学习·神经网络·keras
小五1276 小时前
U-net系列
深度学习·目标检测·目标跟踪
胖哥真不错6 小时前
Python基于PyTorch实现多输入多输出进行BP神经网络回归预测项目实战
pytorch·python·毕业设计·论文·毕设·多输入多输出·bp神经网络回归预测
zzZ65658 小时前
U-net 系列算法总结
人工智能·深度学习·机器学习
AI科技星8 小时前
基于空间螺旋运动假设的水星近日点进动理论推导与验证
数据结构·人工智能·经验分享·算法·计算机视觉
咩?8 小时前
10.27-yolov5代码
人工智能·python·深度学习