opencv基础53-图像轮廓06-判断像素点与轮廓的关系(轮廓内,轮廓上,轮廓外)cv2.pointPolygonTest()

点到轮廓的距离

在 OpenCV 中,函数 cv2.pointPolygonTest()被用来计算点到多边形(轮廓)的最短距离(也

就是垂线距离),这个计算过程又称点和多边形的关系测试。该函数的语法格式为:

retval = cv2.pointPolygonTest( contour, pt, measureDist )

式中的返回值为 retval,与参数 measureDist 的值有关。

式中的参数如下:

  • contour 为轮廓。
  • pt 为待判定的点。
  • measureDist 为布尔型值,表示距离的判定方式。
  • 当值为 True 时,表示计算点到轮廓的距离。如果点在轮廓的外部,返回值为负数;如果点在轮廓上,返回值为 0;如果点在轮廓内部,返回值为正数。
  • 当值为 False 时,不计算距离,只返回"-1"、"0"和"1"中的一个值,表示点相对于轮廓的位置关系。如果点在轮廓的外部,返回值为"-1";如果点在轮廓上,返回值为"0";如果点在轮廓内部,返回值为"1"。

示例:使用函数 cv2.pointPolygonTest()计算点到轮廓的最短距离。

使用函数 cv2.pointPolygonTest()计算点到轮廓的最短距离,需要将参数 measureDist 的值设置为 True。

代码如下:

cpp 复制代码
import cv2
#----------------原始图像-------------------------
o = cv2.imread('cs.bmp')
cv2.imshow("original",o)
#----------------获取凸包------------------------
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,
 cv2.RETR_LIST,
 cv2.CHAIN_APPROX_SIMPLE)
hull = cv2.convexHull(contours[0])

cv2.polylines(o, [hull], True, (0, 255, 0), 2)
#----------------内部点 A 到轮廓的距离-------------------------
distA = cv2.pointPolygonTest(hull, (300, 150), True)
font=cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(o,'A',(300,150), font, 1,(0,255,0),2)
print("distA=",distA)
#----------------外部点 B 到轮廓的距离-------------------------
distB = cv2.pointPolygonTest(hull, (300, 250), True)
font=cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(o,'B',(300,250), font, 1,(0,255,0),2)
print("distB=",distB)
#------------正好处于轮廓上的点 C 到轮廓的距离-----------------
distC = cv2.pointPolygonTest(hull, (423, 112), True)
font=cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(o,'C',(423,112), font, 1,(0,255,0),2)
print("distC=",distC)

#----------------显示-------------------------
cv2.imshow("result1",o)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果:

同时,程序还会显示如下的结果:

cpp 复制代码
distA= 16.891650862259112
distB= -81.17585848021565
distC= -0.0

从以上结果可以看出,

  • A 点算出来的距离为"16.891650862259112",是一个正数,说明 A 点在轮廓内部。
  • B 点算出来的距离为"-81.17585848021565",是一个负数,说明 B 点在轮廓外部。
  • C 点算出来的距离为"-0.0",说明 C 点在轮廓上。

在实际使用中,如果想获取位于轮廓上的点,可以通过打印轮廓点集的方式获取。例如,本例中可以通过语句"print(hull)"获取轮廓上的点。在获取轮廓上的点以后,可以将其用作函数 cv2.pointPolygonTest()的参数,以测试函数返回值是否为零。

示例2:使用函数 cv2.pointPolygonTest()判断点与轮廓的关系。

代码如下:

cpp 复制代码
import cv2
#----------------原始图像-------------------------
o = cv2.imread('cs.bmp')
cv2.imshow("original",o)
#----------------获取凸包------------------------
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,
 cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
hull = cv2.convexHull(contours[0])
image = cv2.cvtColor(gray,cv2.COLOR_GRAY2BGR)
cv2.polylines(image, [hull], True, (0, 255, 0), 2)
#----------------内部点 A 与轮廓的关系-------------------------
distA = cv2.pointPolygonTest(hull, (300, 150),False)
font=cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(image,'A',(300,150), font, 1,(0,255,0),3)
print("distA=",distA)
#----------------外部点 B 与轮廓的关系-------------------------
distB = cv2.pointPolygonTest(hull, (300, 250), False)
font=cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(image,'B',(300,250), font, 1,(0,255,0),3)
print("distB=",distB)
#----------------边缘线上的点 C 与轮廓的关系----------------------
distC = cv2.pointPolygonTest(hull, (423, 112),False)
font=cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(image,'C',(423,112), font, 1,(0,255,0),3)

print("distC=",distC)
#----------------显示-------------------------
cv2.imshow("result",image)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果:

同时,程序还会显示如下的运行结果:

cpp 复制代码
distA= 1.0
distB= -1.0
distC= 0.0

从以上结果可以看出,

  • A 点算出来的关系值为"1",说明该点在轮廓的内部。
  • B 点算出来的关系值为"-1",说明该点在轮廓的外部。
  • C 点算出来的关系值为零值,说明该点在轮廓上。

在实际应用中,我们可以拿这个方法去判断模板检测的像素点是否在一个指定的ROI区域内,具体应用示例我们后续在实战篇中讲解并代码示例。

相关推荐
小王子102418 分钟前
设计模式Python版 组合模式
python·设计模式·组合模式
kakaZhui21 分钟前
【llm对话系统】大模型源码分析之 LLaMA 位置编码 RoPE
人工智能·深度学习·chatgpt·aigc·llama
struggle20251 小时前
一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
人工智能·深度学习·目标检测·语言模型·自然语言处理·数据挖掘·集成学习
佛州小李哥1 小时前
通过亚马逊云科技Bedrock打造自定义AI智能体Agent(上)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
Mason Lin2 小时前
2025年1月22日(网络编程 udp)
网络·python·udp
清弦墨客2 小时前
【蓝桥杯】43697.机器人塔
python·蓝桥杯·程序算法
云空2 小时前
《DeepSeek 网页/API 性能异常(DeepSeek Web/API Degraded Performance):网络安全日志》
运维·人工智能·web安全·网络安全·开源·网络攻击模型·安全威胁分析
AIGC大时代2 小时前
对比DeepSeek、ChatGPT和Kimi的学术写作关键词提取能力
论文阅读·人工智能·chatgpt·数据分析·prompt
山晨啊84 小时前
2025年美赛B题-结合Logistic阻滞增长模型和SIR传染病模型研究旅游可持续性-成品论文
人工智能·机器学习
RZer4 小时前
Hypium+python鸿蒙原生自动化安装配置
python·自动化·harmonyos