opencv基础53-图像轮廓06-判断像素点与轮廓的关系(轮廓内,轮廓上,轮廓外)cv2.pointPolygonTest()

点到轮廓的距离

在 OpenCV 中,函数 cv2.pointPolygonTest()被用来计算点到多边形(轮廓)的最短距离(也

就是垂线距离),这个计算过程又称点和多边形的关系测试。该函数的语法格式为:

retval = cv2.pointPolygonTest( contour, pt, measureDist )

式中的返回值为 retval,与参数 measureDist 的值有关。

式中的参数如下:

  • contour 为轮廓。
  • pt 为待判定的点。
  • measureDist 为布尔型值,表示距离的判定方式。
  • 当值为 True 时,表示计算点到轮廓的距离。如果点在轮廓的外部,返回值为负数;如果点在轮廓上,返回值为 0;如果点在轮廓内部,返回值为正数。
  • 当值为 False 时,不计算距离,只返回"-1"、"0"和"1"中的一个值,表示点相对于轮廓的位置关系。如果点在轮廓的外部,返回值为"-1";如果点在轮廓上,返回值为"0";如果点在轮廓内部,返回值为"1"。

示例:使用函数 cv2.pointPolygonTest()计算点到轮廓的最短距离。

使用函数 cv2.pointPolygonTest()计算点到轮廓的最短距离,需要将参数 measureDist 的值设置为 True。

代码如下:

cpp 复制代码
import cv2
#----------------原始图像-------------------------
o = cv2.imread('cs.bmp')
cv2.imshow("original",o)
#----------------获取凸包------------------------
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,
 cv2.RETR_LIST,
 cv2.CHAIN_APPROX_SIMPLE)
hull = cv2.convexHull(contours[0])

cv2.polylines(o, [hull], True, (0, 255, 0), 2)
#----------------内部点 A 到轮廓的距离-------------------------
distA = cv2.pointPolygonTest(hull, (300, 150), True)
font=cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(o,'A',(300,150), font, 1,(0,255,0),2)
print("distA=",distA)
#----------------外部点 B 到轮廓的距离-------------------------
distB = cv2.pointPolygonTest(hull, (300, 250), True)
font=cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(o,'B',(300,250), font, 1,(0,255,0),2)
print("distB=",distB)
#------------正好处于轮廓上的点 C 到轮廓的距离-----------------
distC = cv2.pointPolygonTest(hull, (423, 112), True)
font=cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(o,'C',(423,112), font, 1,(0,255,0),2)
print("distC=",distC)

#----------------显示-------------------------
cv2.imshow("result1",o)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果:

同时,程序还会显示如下的结果:

cpp 复制代码
distA= 16.891650862259112
distB= -81.17585848021565
distC= -0.0

从以上结果可以看出,

  • A 点算出来的距离为"16.891650862259112",是一个正数,说明 A 点在轮廓内部。
  • B 点算出来的距离为"-81.17585848021565",是一个负数,说明 B 点在轮廓外部。
  • C 点算出来的距离为"-0.0",说明 C 点在轮廓上。

在实际使用中,如果想获取位于轮廓上的点,可以通过打印轮廓点集的方式获取。例如,本例中可以通过语句"print(hull)"获取轮廓上的点。在获取轮廓上的点以后,可以将其用作函数 cv2.pointPolygonTest()的参数,以测试函数返回值是否为零。

示例2:使用函数 cv2.pointPolygonTest()判断点与轮廓的关系。

代码如下:

cpp 复制代码
import cv2
#----------------原始图像-------------------------
o = cv2.imread('cs.bmp')
cv2.imshow("original",o)
#----------------获取凸包------------------------
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,
 cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
hull = cv2.convexHull(contours[0])
image = cv2.cvtColor(gray,cv2.COLOR_GRAY2BGR)
cv2.polylines(image, [hull], True, (0, 255, 0), 2)
#----------------内部点 A 与轮廓的关系-------------------------
distA = cv2.pointPolygonTest(hull, (300, 150),False)
font=cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(image,'A',(300,150), font, 1,(0,255,0),3)
print("distA=",distA)
#----------------外部点 B 与轮廓的关系-------------------------
distB = cv2.pointPolygonTest(hull, (300, 250), False)
font=cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(image,'B',(300,250), font, 1,(0,255,0),3)
print("distB=",distB)
#----------------边缘线上的点 C 与轮廓的关系----------------------
distC = cv2.pointPolygonTest(hull, (423, 112),False)
font=cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(image,'C',(423,112), font, 1,(0,255,0),3)

print("distC=",distC)
#----------------显示-------------------------
cv2.imshow("result",image)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果:

同时,程序还会显示如下的运行结果:

cpp 复制代码
distA= 1.0
distB= -1.0
distC= 0.0

从以上结果可以看出,

  • A 点算出来的关系值为"1",说明该点在轮廓的内部。
  • B 点算出来的关系值为"-1",说明该点在轮廓的外部。
  • C 点算出来的关系值为零值,说明该点在轮廓上。

在实际应用中,我们可以拿这个方法去判断模板检测的像素点是否在一个指定的ROI区域内,具体应用示例我们后续在实战篇中讲解并代码示例。

相关推荐
计算机小手几秒前
零基础搭建!基于PP-ShiTuV2的轻量级图像识别系统(Docker+API部署指南)
图像处理·经验分享·开源软件
掘金-我是哪吒9 分钟前
分布式微服务系统架构第132集:Python大模型,fastapi项目-Jeskson文档-微服务分布式系统架构
分布式·python·微服务·架构·系统架构
四口鲸鱼爱吃盐14 分钟前
BMVC2023 | 多样化高层特征以提升对抗迁移性
人工智能·深度学习·cnn·vit·对抗攻击·迁移攻击
Echo``1 小时前
3:OpenCV—视频播放
图像处理·人工智能·opencv·算法·机器学习·视觉检测·音视频
Douglassssssss1 小时前
【深度学习】使用块的网络(VGG)
网络·人工智能·深度学习
okok__TXF1 小时前
SpringBoot3+AI
java·人工智能·spring
SAP工博科技1 小时前
如何提升新加坡SAP实施成功率?解答中企出海的“税务合规密码” | 工博科技SAP金牌服务商
人工智能·科技·制造
xhdll1 小时前
egpo进行train_egpo训练时,keyvalueError:“replay_sequence_length“
python·egpo
闭月之泪舞1 小时前
OpenCv高阶(八)——摄像头调用、摄像头OCR
人工智能·opencv·ocr
終不似少年遊*1 小时前
【从基础到模型网络】深度学习-语义分割-ROI
人工智能·深度学习·卷积神经网络·语义分割·fcn·roi