LeetCode 518. 零钱兑换 II(动态规划 完全背包)

题目:

链接:LeetCode 518. 零钱兑换 II

难度:中等

动态规划:

dp[i][j] 定义 :可选前 i 种硬币的情况下,组成金额 j 的组合数。
初始状态

  • dp[0][j] = 0, 1 <= j <= amount(不选取任何硬币的情况下,组成正整数金额的组合数为0)
  • dp[i][0] = 1, 0 <= i <= n(金额为0的情况下,只有空集的这一种组合才是0)

状态转移方程

cpp 复制代码
	if(j - coins[i - 1] >= 0)  // 容量足够选取该硬币:组合数=选取该硬币和不选该硬币两种状态相加
		dp[i][j] = dp[i][j - coins[i - 1]] + dp[i - 1][j];
	else
		dp[i][j] = dp[i - 1][j];  // 容量不足以选取该硬币:组合数=不选该硬币的组合数

代码:

cpp 复制代码
class Solution {
public:
    int change(int amount, vector<int>& coins) {
        int n = coins.size();
        vector<vector<int>> dp(n + 1, vector<int>(amount + 1, 0));  // dp[i][j]:i代表使用前i种硬币,j代表金额
        for(int i = 0; i <= n; i++)  // 初始化,组成金额为0的方案数总是1(不选任何硬币)
            dp[i][0] = 1;
        for(int i = 1; i <= n; i++)
        {
            for(int j = 1; j <= amount; j++)
            {
                if(j - coins[i - 1] >= 0)  // 容量足够选取该硬币:组合数=选取该硬币和不选该硬币两种状态相加
                    dp[i][j] = dp[i][j - coins[i - 1]] + dp[i - 1][j];
                else
                    dp[i][j] = dp[i - 1][j];  // 容量不足以选取该硬币:组合数=不选该硬币的组合数
            }
        }
        return dp[n][amount];
    }
};

时间复杂度O(N * amount),N是coins数组长度。

空间复杂度O(N * amount)。

相关推荐
纪元A梦4 小时前
贪心算法应用:化工反应器调度问题详解
算法·贪心算法
阿让啊4 小时前
C语言strtol 函数使用方法
c语言·数据结构·c++·单片机·嵌入式硬件
深圳市快瞳科技有限公司4 小时前
小场景大市场:猫狗识别算法在宠物智能设备中的应用
算法·计算机视觉·宠物
liulilittle5 小时前
OPENPPP2 —— IP标准校验和算法深度剖析:从原理到SSE2优化实现
网络·c++·网络协议·tcp/ip·算法·ip·通信
superlls7 小时前
(算法 哈希表)【LeetCode 349】两个数组的交集 思路笔记自留
java·数据结构·算法
田里的水稻7 小时前
C++_队列编码实例,从末端添加对象,同时把头部的对象剔除掉,中的队列长度为设置长度NUM_OBJ
java·c++·算法
纪元A梦7 小时前
贪心算法应用:保险理赔调度问题详解
算法·贪心算法
Ripple123128 小时前
数据结构:顺序表与链表
数据结构·链表
Jayden_Ruan8 小时前
C++逆向输出一个字符串(三)
开发语言·c++·算法
liulun8 小时前
Skia如何渲染 Lottie 动画
c++·动画