LeetCode 518. 零钱兑换 II(动态规划 完全背包)

题目:

链接:LeetCode 518. 零钱兑换 II

难度:中等

动态规划:

dp[i][j] 定义 :可选前 i 种硬币的情况下,组成金额 j 的组合数。
初始状态

  • dp[0][j] = 0, 1 <= j <= amount(不选取任何硬币的情况下,组成正整数金额的组合数为0)
  • dp[i][0] = 1, 0 <= i <= n(金额为0的情况下,只有空集的这一种组合才是0)

状态转移方程

cpp 复制代码
	if(j - coins[i - 1] >= 0)  // 容量足够选取该硬币:组合数=选取该硬币和不选该硬币两种状态相加
		dp[i][j] = dp[i][j - coins[i - 1]] + dp[i - 1][j];
	else
		dp[i][j] = dp[i - 1][j];  // 容量不足以选取该硬币:组合数=不选该硬币的组合数

代码:

cpp 复制代码
class Solution {
public:
    int change(int amount, vector<int>& coins) {
        int n = coins.size();
        vector<vector<int>> dp(n + 1, vector<int>(amount + 1, 0));  // dp[i][j]:i代表使用前i种硬币,j代表金额
        for(int i = 0; i <= n; i++)  // 初始化,组成金额为0的方案数总是1(不选任何硬币)
            dp[i][0] = 1;
        for(int i = 1; i <= n; i++)
        {
            for(int j = 1; j <= amount; j++)
            {
                if(j - coins[i - 1] >= 0)  // 容量足够选取该硬币:组合数=选取该硬币和不选该硬币两种状态相加
                    dp[i][j] = dp[i][j - coins[i - 1]] + dp[i - 1][j];
                else
                    dp[i][j] = dp[i - 1][j];  // 容量不足以选取该硬币:组合数=不选该硬币的组合数
            }
        }
        return dp[n][amount];
    }
};

时间复杂度O(N * amount),N是coins数组长度。

空间复杂度O(N * amount)。

相关推荐
John_ToDebug6 分钟前
浏览器内核崩溃深度分析:从 MiniDump 堆栈到 BindOnce UAF 机制(未完待续...)
c++·chrome·windows
你撅嘴真丑18 分钟前
字符环 与 变换的矩阵
算法
早点睡觉好了35 分钟前
重排序 (Re-ranking) 算法详解
算法·ai·rag
gihigo199838 分钟前
基于全局自适应动态规划(GADP)的MATLAB实现方案
算法
念越1 小时前
数据结构:栈堆
java·开发语言·数据结构
txinyu的博客1 小时前
解析muduo源码之 SocketsOps.h & SocketsOps.cc
c++
dear_bi_MyOnly1 小时前
【多线程——线程状态与安全】
java·开发语言·数据结构·后端·中间件·java-ee·intellij-idea
ctyshr2 小时前
C++编译期数学计算
开发语言·c++·算法
浪客灿心2 小时前
list_stack_queue
数据结构·list
zh_xuan2 小时前
最小跳跃次数
数据结构·算法