LeetCode 518. 零钱兑换 II(动态规划 完全背包)

题目:

链接:LeetCode 518. 零钱兑换 II

难度:中等

动态规划:

dp[i][j] 定义 :可选前 i 种硬币的情况下,组成金额 j 的组合数。
初始状态

  • dp[0][j] = 0, 1 <= j <= amount(不选取任何硬币的情况下,组成正整数金额的组合数为0)
  • dp[i][0] = 1, 0 <= i <= n(金额为0的情况下,只有空集的这一种组合才是0)

状态转移方程

cpp 复制代码
	if(j - coins[i - 1] >= 0)  // 容量足够选取该硬币:组合数=选取该硬币和不选该硬币两种状态相加
		dp[i][j] = dp[i][j - coins[i - 1]] + dp[i - 1][j];
	else
		dp[i][j] = dp[i - 1][j];  // 容量不足以选取该硬币:组合数=不选该硬币的组合数

代码:

cpp 复制代码
class Solution {
public:
    int change(int amount, vector<int>& coins) {
        int n = coins.size();
        vector<vector<int>> dp(n + 1, vector<int>(amount + 1, 0));  // dp[i][j]:i代表使用前i种硬币,j代表金额
        for(int i = 0; i <= n; i++)  // 初始化,组成金额为0的方案数总是1(不选任何硬币)
            dp[i][0] = 1;
        for(int i = 1; i <= n; i++)
        {
            for(int j = 1; j <= amount; j++)
            {
                if(j - coins[i - 1] >= 0)  // 容量足够选取该硬币:组合数=选取该硬币和不选该硬币两种状态相加
                    dp[i][j] = dp[i][j - coins[i - 1]] + dp[i - 1][j];
                else
                    dp[i][j] = dp[i - 1][j];  // 容量不足以选取该硬币:组合数=不选该硬币的组合数
            }
        }
        return dp[n][amount];
    }
};

时间复杂度O(N * amount),N是coins数组长度。

空间复杂度O(N * amount)。

相关推荐
代码雕刻家30 分钟前
2.4.蓝桥杯-分巧克力
算法·蓝桥杯
Ulyanov40 分钟前
顶层设计——单脉冲雷达仿真器的灵魂蓝图
python·算法·pyside·仿真系统·单脉冲
智者知已应修善业2 小时前
【查找字符最大下标以*符号分割以**结束】2024-12-24
c语言·c++·经验分享·笔记·算法
划破黑暗的第一缕曙光2 小时前
[数据结构]:5.二叉树链式结构的实现1
数据结构
91刘仁德2 小时前
c++类和对象(下)
c语言·jvm·c++·经验分享·笔记·算法
青桔柠薯片2 小时前
数据结构:单向链表,顺序栈和链式栈
数据结构·链表
diediedei3 小时前
模板编译期类型检查
开发语言·c++·算法
阿杰学AI3 小时前
AI核心知识78——大语言模型之CLM(简洁且通俗易懂版)
人工智能·算法·ai·语言模型·rag·clm·语境化语言模型
mmz12073 小时前
分治算法(c++)
c++·算法
XiaoFan0123 小时前
将有向工作流图转为结构树的实现
java·数据结构·决策树