LeetCode 518. 零钱兑换 II(动态规划 完全背包)

题目:

链接:LeetCode 518. 零钱兑换 II

难度:中等

动态规划:

dp[i][j] 定义 :可选前 i 种硬币的情况下,组成金额 j 的组合数。
初始状态

  • dp[0][j] = 0, 1 <= j <= amount(不选取任何硬币的情况下,组成正整数金额的组合数为0)
  • dp[i][0] = 1, 0 <= i <= n(金额为0的情况下,只有空集的这一种组合才是0)

状态转移方程

cpp 复制代码
	if(j - coins[i - 1] >= 0)  // 容量足够选取该硬币:组合数=选取该硬币和不选该硬币两种状态相加
		dp[i][j] = dp[i][j - coins[i - 1]] + dp[i - 1][j];
	else
		dp[i][j] = dp[i - 1][j];  // 容量不足以选取该硬币:组合数=不选该硬币的组合数

代码:

cpp 复制代码
class Solution {
public:
    int change(int amount, vector<int>& coins) {
        int n = coins.size();
        vector<vector<int>> dp(n + 1, vector<int>(amount + 1, 0));  // dp[i][j]:i代表使用前i种硬币,j代表金额
        for(int i = 0; i <= n; i++)  // 初始化,组成金额为0的方案数总是1(不选任何硬币)
            dp[i][0] = 1;
        for(int i = 1; i <= n; i++)
        {
            for(int j = 1; j <= amount; j++)
            {
                if(j - coins[i - 1] >= 0)  // 容量足够选取该硬币:组合数=选取该硬币和不选该硬币两种状态相加
                    dp[i][j] = dp[i][j - coins[i - 1]] + dp[i - 1][j];
                else
                    dp[i][j] = dp[i - 1][j];  // 容量不足以选取该硬币:组合数=不选该硬币的组合数
            }
        }
        return dp[n][amount];
    }
};

时间复杂度O(N * amount),N是coins数组长度。

空间复杂度O(N * amount)。

相关推荐
YuTaoShao8 小时前
【LeetCode 每日一题】1653. 使字符串平衡的最少删除次数——(解法一)前后缀分解
算法·leetcode·职场和发展
VT.馒头8 小时前
【力扣】2727. 判断对象是否为空
javascript·数据结构·算法·leetcode·职场和发展
goodluckyaa9 小时前
LCR 006. 两数之和 II - 输入有序数组
算法
孤狼warrior9 小时前
YOLO目标检测 一千字解析yolo最初的摸样 模型下载,数据集构建及模型训练代码
人工智能·python·深度学习·算法·yolo·目标检测·目标跟踪
Σίσυφος19009 小时前
PCL法向量估计 之 RANSAC 平面估计法向量
算法·机器学习·平面
xhbaitxl9 小时前
算法学习day39-动态规划
学习·算法·动态规划
I_LPL9 小时前
day23 代码随想录算法训练营 回溯专题2
算法·hot100·回溯算法·求职面试
智者知已应修善业9 小时前
【洛谷P9975奶牛被病毒传染最少数量推导,导出多样例】2025-2-26
c语言·c++·经验分享·笔记·算法·推荐算法
Trouvaille ~9 小时前
【Linux】应用层协议设计实战(一):自定义协议与网络计算器
linux·运维·服务器·网络·c++·http·应用层协议
CSCN新手听安9 小时前
【linux】高级IO,I/O多路转接之poll,接口和原理讲解,poll版本的TCP服务器
linux·运维·服务器·c++·计算机网络·高级io·poll