LeetCode 518. 零钱兑换 II(动态规划 完全背包)

题目:

链接:LeetCode 518. 零钱兑换 II

难度:中等

动态规划:

dp[i][j] 定义 :可选前 i 种硬币的情况下,组成金额 j 的组合数。
初始状态

  • dp[0][j] = 0, 1 <= j <= amount(不选取任何硬币的情况下,组成正整数金额的组合数为0)
  • dp[i][0] = 1, 0 <= i <= n(金额为0的情况下,只有空集的这一种组合才是0)

状态转移方程

cpp 复制代码
	if(j - coins[i - 1] >= 0)  // 容量足够选取该硬币:组合数=选取该硬币和不选该硬币两种状态相加
		dp[i][j] = dp[i][j - coins[i - 1]] + dp[i - 1][j];
	else
		dp[i][j] = dp[i - 1][j];  // 容量不足以选取该硬币:组合数=不选该硬币的组合数

代码:

cpp 复制代码
class Solution {
public:
    int change(int amount, vector<int>& coins) {
        int n = coins.size();
        vector<vector<int>> dp(n + 1, vector<int>(amount + 1, 0));  // dp[i][j]:i代表使用前i种硬币,j代表金额
        for(int i = 0; i <= n; i++)  // 初始化,组成金额为0的方案数总是1(不选任何硬币)
            dp[i][0] = 1;
        for(int i = 1; i <= n; i++)
        {
            for(int j = 1; j <= amount; j++)
            {
                if(j - coins[i - 1] >= 0)  // 容量足够选取该硬币:组合数=选取该硬币和不选该硬币两种状态相加
                    dp[i][j] = dp[i][j - coins[i - 1]] + dp[i - 1][j];
                else
                    dp[i][j] = dp[i - 1][j];  // 容量不足以选取该硬币:组合数=不选该硬币的组合数
            }
        }
        return dp[n][amount];
    }
};

时间复杂度O(N * amount),N是coins数组长度。

空间复杂度O(N * amount)。

相关推荐
Doro再努力21 分钟前
【数据结构08】队列实现及练习
数据结构·算法
AI视觉网奇1 小时前
ue5 插件 WebSocket
c++·ue5
左直拳1 小时前
将c++程序部署到docker
开发语言·c++·docker
恒者走天下1 小时前
AI智能体通讯项目(底层AI通讯协议实现)
c++
英雄各有见2 小时前
Chapter 5.1.1: 编写你的第一个GPU kernel——Cuda Basics
c++·gpu·cuda·hpc
清铎2 小时前
leetcode_day12_滑动窗口_《绝境求生》
python·算法·leetcode·动态规划
linweidong2 小时前
嵌入式电机:如何在低速和高负载状态下保持FOC(Field-Oriented Control)算法的电流控制稳定?
stm32·单片机·算法
梵尔纳多2 小时前
OpenGL着色器语言(GLSL)
c++·opengl·着色器
踩坑记录2 小时前
leetcode hot100 42 接雨水 hard 双指针
leetcode
net3m332 小时前
单片机屏幕多级菜单系统之当前屏幕号+屏幕菜单当前深度 机制
c语言·c++·算法