YOLOv5、YOLOv8改进:MobileViT:轻量通用且适合移动端的视觉Transformer

MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer

论文:https://arxiv.org/abs/2110.02178

1简介

MobileviT是一个用于移动设备的轻量级通用可视化Transformer,据作者介绍,这是第一次基于轻量级CNN网络性能的轻量级ViT工作,性能SOTA!。性能优于MobileNetV3、CrossviT等网络。

轻量级卷积神经网络(CNN)是移动视觉任务的实际应用。他们的空间归纳偏差允许他们在不同的视觉任务中以较少的参数学习表征。然而,这些网络在空间上是局部的。为了学习全局表征,采用了基于自注意力的Vision Transformer(ViTs)。与CNN不同,ViT是heavy-weight。

在本文中,本文提出了以下问题:是否有可能结合CNN和ViT的优势,构建一个轻量级、低延迟的移动视觉任务网络?

为此提出了MobileViT,一种轻量级的、通用的移动设备Vision Transformer。MobileViT提出了一个不同的视角,以Transformer作为卷积处理信息。

实验结果表明,在不同的任务和数据集上,MobileViT显著优于基于CNN和ViT的网络。

在ImageNet-1k数据集上,MobileViT在大约600万个参数的情况下达到了78.4%的Top-1准确率,对于相同数量的参数,比MobileNetv3和DeiT的准确率分别高出3.2%和6.2%。

在MS-COCO目标检测任务中,在参数数量相近的情况下,MobileViT比MobileNetv3的准确率高5.7%。

2.Mobile-ViT

MobileViT Block如下图所示,其目的是用较少的参数对输入张量中的局部和全局信息进行建模。

形式上,对于一个给定的输入张量, MobileViT首先应用一个n×n标准卷积层,然后用一个一个点(或1×1)卷积层产生特征。n×n卷积层编码局部空间信息,而点卷积通过学习输入通道的线性组合将张量投影到高维空间(d维,其中d>c)。

通过MobileViT,希望在拥有有效感受野的同时,对远距离非局部依赖进行建模。一种被广泛研究的建模远程依赖关系的方法是扩张卷积。然而,这种方法需要谨慎选择膨胀率。否则,权重将应用于填充的零而不是有效的空间区域。

另一个有希望的解决方案是Self-Attention。在Self-Attention方法中,具有multi-head self-attention的vision transformers(ViTs)在视觉识别任务中是有效的。然而,vit是heavy-weight,并由于vit缺乏空间归纳偏差,表现出较差的可优化性。

下面附上改进代码

---------------------------------------------分割线--------------------------------------------------

在common中加入如下代码

需要安装一个einops模块

pip --default-timeout=5000 install -i https://pypi.tuna.tsinghua.edu.cn/simple einops

这边建议直接兴建一个

import torch
import torch.nn as nn

from einops import rearrange


def conv_1x1_bn(inp, oup):
    return nn.Sequential(
        nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
        nn.BatchNorm2d(oup),
        nn.SiLU()
    )


def conv_nxn_bn(inp, oup, kernal_size=3, stride=1):
    return nn.Sequential(
        nn.Conv2d(inp, oup, kernal_size, stride, 1, bias=False),
        nn.BatchNorm2d(oup),
        nn.SiLU()
    )


class PreNorm(nn.Module):
    def __init__(self, dim, fn):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.fn = fn
    
    def forward(self, x, **kwargs):
        return self.fn(self.norm(x), **kwargs)


class FeedForward(nn.Module):
    def __init__(self, dim, hidden_dim, dropout=0.):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(dim, hidden_dim),
            nn.SiLU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_dim, dim),
            nn.Dropout(dropout)
        )
    
    def forward(self, x):
        return self.net(x)


class Attention(nn.Module):
    def __init__(self, dim, heads=8, dim_head=64, dropout=0.):
        super().__init__()
        inner_dim = dim_head *  heads
        project_out = not (heads == 1 and dim_head == dim)

        self.heads = heads
        self.scale = dim_head ** -0.5

        self.attend = nn.Softmax(dim = -1)
        self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, dim),
            nn.Dropout(dropout)
        ) if project_out else nn.Identity()

    def forward(self, x):
        qkv = self.to_qkv(x).chunk(3, dim=-1)
        q, k, v = map(lambda t: rearrange(t, 'b p n (h d) -> b p h n d', h = self.heads), qkv)

        dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
        attn = self.attend(dots)
        out = torch.matmul(attn, v)
        out = rearrange(out, 'b p h n d -> b p n (h d)')
        return self.to_out(out)


class Transformer(nn.Module):
    def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.):
        super().__init__()
        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(nn.ModuleList([
                PreNorm(dim, Attention(dim, heads, dim_head, dropout)),
                PreNorm(dim, FeedForward(dim, mlp_dim, dropout))
            ]))
    
    def forward(self, x):
        for attn, ff in self.layers:
            x = attn(x) + x
            x = ff(x) + x
        return x


class MV2Block(nn.Module):
    def __init__(self, inp, oup, stride=1, expansion=4):
        super().__init__()
        self.stride = stride
        assert stride in [1, 2]

        hidden_dim = int(inp * expansion)
        self.use_res_connect = self.stride == 1 and inp == oup

        if expansion == 1:
            self.conv = nn.Sequential(
                # dw
                nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
                nn.BatchNorm2d(hidden_dim),
                nn.SiLU(),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                nn.BatchNorm2d(oup),
            )
        else:
            self.conv = nn.Sequential(
                # pw
                nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
                nn.BatchNorm2d(hidden_dim),
                nn.SiLU(),
                # dw
                nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
                nn.BatchNorm2d(hidden_dim),
                nn.SiLU(),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                nn.BatchNorm2d(oup),
            )

    def forward(self, x):
        if self.use_res_connect:
            return x + self.conv(x)
        else:
            return self.conv(x)


class MobileViTBlock(nn.Module):
    def __init__(self, dim, depth, channel, kernel_size, patch_size, mlp_dim, dropout=0.):
        super().__init__()
        self.ph, self.pw = patch_size

        self.conv1 = conv_nxn_bn(channel, channel, kernel_size)
        self.conv2 = conv_1x1_bn(channel, dim)

        self.transformer = Transformer(dim, depth, 4, 8, mlp_dim, dropout)

        self.conv3 = conv_1x1_bn(dim, channel)
        self.conv4 = conv_nxn_bn(2 * channel, channel, kernel_size)
    
    def forward(self, x):
        y = x.clone()

        # Local representations
        x = self.conv1(x)
        x = self.conv2(x)
        
        # Global representations
        _, _, h, w = x.shape
        x = rearrange(x, 'b d (h ph) (w pw) -> b (ph pw) (h w) d', ph=self.ph, pw=self.pw)
        x = self.transformer(x)
        x = rearrange(x, 'b (ph pw) (h w) d -> b d (h ph) (w pw)', h=h//self.ph, w=w//self.pw, ph=self.ph, pw=self.pw)

        # Fusion
        x = self.conv3(x)
        x = torch.cat((x, y), 1)
        x = self.conv4(x)
        return x


class MobileViT(nn.Module):
    def __init__(self, image_size, dims, channels, num_classes, expansion=4, kernel_size=3, patch_size=(2, 2)):
        super().__init__()
        ih, iw = image_size
        ph, pw = patch_size
        assert ih % ph == 0 and iw % pw == 0

        L = [2, 4, 3]

        self.conv1 = conv_nxn_bn(3, channels[0], stride=2)

        self.mv2 = nn.ModuleList([])
        self.mv2.append(MV2Block(channels[0], channels[1], 1, expansion))
        self.mv2.append(MV2Block(channels[1], channels[2], 2, expansion))
        self.mv2.append(MV2Block(channels[2], channels[3], 1, expansion))
        self.mv2.append(MV2Block(channels[2], channels[3], 1, expansion))   # Repeat
        self.mv2.append(MV2Block(channels[3], channels[4], 2, expansion))
        self.mv2.append(MV2Block(channels[5], channels[6], 2, expansion))
        self.mv2.append(MV2Block(channels[7], channels[8], 2, expansion))
        
        self.mvit = nn.ModuleList([])
        self.mvit.append(MobileViTBlock(dims[0], L[0], channels[5], kernel_size, patch_size, int(dims[0]*2)))
        self.mvit.append(MobileViTBlock(dims[1], L[1], channels[7], kernel_size, patch_size, int(dims[1]*4)))
        self.mvit.append(MobileViTBlock(dims[2], L[2], channels[9], kernel_size, patch_size, int(dims[2]*4)))

        self.conv2 = conv_1x1_bn(channels[-2], channels[-1])

        self.pool = nn.AvgPool2d(ih//32, 1)
        self.fc = nn.Linear(channels[-1], num_classes, bias=False)

    def forward(self, x):
        x = self.conv1(x)
        x = self.mv2[0](x)

        x = self.mv2[1](x)
        x = self.mv2[2](x)
        x = self.mv2[3](x)      # Repeat

        x = self.mv2[4](x)
        x = self.mvit[0](x)

        x = self.mv2[5](x)
        x = self.mvit[1](x)

        x = self.mv2[6](x)
        x = self.mvit[2](x)
        x = self.conv2(x)

        x = self.pool(x).view(-1, x.shape[1])
        x = self.fc(x)
        return x


def mobilevit_xxs():
    dims = [64, 80, 96]
    channels = [16, 16, 24, 24, 48, 48, 64, 64, 80, 80, 320]
    return MobileViT((256, 256), dims, channels, num_classes=1000, expansion=2)


def mobilevit_xs():
    dims = [96, 120, 144]
    channels = [16, 32, 48, 48, 64, 64, 80, 80, 96, 96, 384]
    return MobileViT((256, 256), dims, channels, num_classes=1000)


def mobilevit_s():
    dims = [144, 192, 240]
    channels = [16, 32, 64, 64, 96, 96, 128, 128, 160, 160, 640]
    return MobileViT((256, 256), dims, channels, num_classes=1000)


def count_parameters(model):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)


if __name__ == '__main__':
    img = torch.randn(5, 3, 256, 256)

    vit = mobilevit_xxs()
    out = vit(img)
    print(out.shape)
    print(count_parameters(vit))

    vit = mobilevit_xs()
    out = vit(img)
    print(out.shape)
    print(count_parameters(vit))

    vit = mobilevit_s()
    out = vit(img)
    print(out.shape)
    print(count_parameters(vit))

yolo.py中导入并注册

加入MV2Block, MobileViTBlock

修改yaml文件

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
 
# Parameters
nc: 1 # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32
 
# YOLOv5 backbone
backbone:
  # [from, number, module, args] 640 x 640
#  [[-1, 1, Conv, [32, 6, 2, 2]],  # 0-P1/2  320 x 320
  [[-1, 1, Focus, [32, 3]],
   [-1, 1, MV2Block, [32, 1, 2]],  # 1-P2/4
   [-1, 1, MV2Block, [48, 2, 2]],  # 160 x 160
   [-1, 2, MV2Block, [48, 1, 2]],
   [-1, 1, MV2Block, [64, 2, 2]],  # 80 x 80
   [-1, 1, MobileViTBlock, [64,96, 2, 3, 2, 192]], # 5 out_dim,dim, depth, kernel_size, patch_size, mlp_dim
   [-1, 1, MV2Block, [80, 2, 2]],  # 40 x 40
   [-1, 1, MobileViTBlock, [80,120, 4, 3, 2, 480]], # 7
   [-1, 1, MV2Block, [96, 2, 2]],   # 20 x 20
   [-1, 1, MobileViTBlock, [96,144, 3, 3, 2, 576]], # 11-P2/4 # 9
  ]
 
# YOLOv5 head
head:
  [[-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 7], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [256, False]],  # 13
 
   [-1, 1, Conv, [128, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 5], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [128, False]],  # 17 (P3/8-small)
 
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [256, False]],  # 20 (P4/16-medium)
 
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [512, False]],  # 23 (P5/32-large)
 
   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

修改mobilevit.py

补充说明

einops.EinopsError: Error while processing rearrange-reduction pattern "b d (h ph) (w pw) -> b (ph pw) (h w) d".

Input tensor shape: torch.Size([1, 120, 42, 42]). Additional info: {'ph': 4, 'pw': 4}

是因为输入输出不匹配造成

记得关掉rect哦!一个是在参数里,另一个在下图。如果要在test或者val中跑,同样要改

相关推荐
OptimaAI17 分钟前
【 LLM论文日更|检索增强:大型语言模型是强大的零样本检索器 】
人工智能·深度学习·语言模型·自然语言处理·nlp
记录无知岁月21 分钟前
【MATLAB】目标检测初探
开发语言·yolo·目标检测·matlab·yolov3·yolov2
深度学习lover32 分钟前
<项目代码>YOLOv8 番茄识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·番茄识别
Watermelo6171 小时前
通过MongoDB Atlas 实现语义搜索与 RAG——迈向AI的搜索机制
人工智能·深度学习·神经网络·mongodb·机器学习·自然语言处理·数据挖掘
AI算法-图哥1 小时前
pytorch量化训练
人工智能·pytorch·深度学习·文生图·模型压缩·量化
陌上阳光3 小时前
动手学深度学习70 BERT微调
人工智能·深度学习·bert
AI服务老曹4 小时前
不仅能够实现前后场的简单互动,而且能够实现人机结合,最终实现整个巡检流程的标准化的智慧园区开源了
大数据·人工智能·深度学习·物联网·开源
金蝶软件小李4 小时前
深度学习和图像处理
图像处理·深度学习·计算机视觉
华清元宇宙实验中心5 小时前
【每天学点AI】前向传播、损失函数、反向传播
深度学习·机器学习·ai人工智能
龙的爹23336 小时前
论文 | The Capacity for Moral Self-Correction in LargeLanguage Models
人工智能·深度学习·机器学习·语言模型·自然语言处理·prompt