回归预测 | MATLAB实现FA-SVM萤火虫算法优化支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现FA-SVM萤火虫算法优化支持向量机多输入单输出回归预测(多指标,多图)

目录

    • [回归预测 | MATLAB实现FA-SVM萤火虫算法优化支持向量机多输入单输出回归预测(多指标,多图)](#回归预测 | MATLAB实现FA-SVM萤火虫算法优化支持向量机多输入单输出回归预测(多指标,多图))

效果一览



基本介绍

回归预测 | MATLAB实现FA-SVM萤火虫算法优化支持向量机多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;

多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现FA-SVM萤火虫算法优化支持向量机多输入单输出回归预测(多指标,多图)
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('data.xlsx');

%%  划分训练集和测试集
temp = randperm(103);

P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);

P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);



%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);



%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129215161 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关推荐
Elaine33615 小时前
【验证码识别算法性能对比实验系统——KNN、SVM、CNN 与多模态大模型的性能博弈与机理分析】
python·opencv·支持向量机·cnn·多模态·数字图像处理
逝川长叹2 天前
利用 SSI-COV 算法自动识别线状结构在环境振动下的模态参数研究(Matlab代码实现)
前端·算法·支持向量机·matlab
dulu~dulu3 天前
机器学习---计算题总结
人工智能·机器学习·支持向量机·集成学习·贝叶斯分类器
小鸡吃米…3 天前
机器学习 - BIRCH 聚类
机器学习·支持向量机·聚类
摆烂咸鱼~3 天前
机器学习(10)
人工智能·机器学习·支持向量机
好奇龙猫4 天前
【人工智能学习-AI-MIT公开课第 16 讲:支持向量机(SVM)】
人工智能·学习·支持向量机
2501_941870564 天前
从分布式缓存到一致性保障的互联网工程语法构建与多语言实践分享
支持向量机·模拟退火算法
2501_941805934 天前
从分布式缓存到高可用数据访问的互联网工程语法实践与多语言探索
支持向量机·模拟退火算法
2501_941886864 天前
基于温哥华云原生实践的分布式缓存一致性设计与多语言实现深度解析
支持向量机·模拟退火算法
2501_941820495 天前
从消息队列到异步可靠传输的互联网工程语法构建与多语言实践分享
支持向量机·模拟退火算法