基于野马算法优化的BP神经网络(预测应用) - 附代码

基于野马算法优化的BP神经网络(预测应用) - 附代码

文章目录

摘要:本文主要介绍如何用野马算法优化BP神经网络并应用于预测。

1.数据介绍

本案例数据一共2000组,其中1900组用于训练,100组用于测试。数据的输入为2维数据,预测的输出为1维数据

2.野马优化BP神经网络

2.1 BP神经网络参数设置

神经网络参数如下:

matlab 复制代码
%% 构造网络结构
%创建神经网络
inputnum = 2;     %inputnum  输入层节点数 2维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 1;     %outputnum  隐含层节点数

2.2 野马算法应用

野马算法原理请参考:https://blog.csdn.net/u011835903/article/details/122683703

野马算法的参数设置为:

matlab 复制代码
popsize = 20;%种群数量
Max_iteration = 20;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:2*10 = 20; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:10*1 = 10;即hiddenum * outputnum;

第二层权值数量为:1;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 41;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( m s e ( T r a i n D a t a E r r o r ) + m e s ( T e s t D a t a E r r o r ) ) fitness = argmin(mse(TrainDataError) + mes(TestDataError)) fitness=argmin(mse(TrainDataError)+mes(TestDataError))

其中TrainDataError,TestDataError分别为训练集和测试集的预测误差。mse为求取均方误差函数,适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从野马算法的收敛曲线可以看到,整体误差是不断下降的,说明野马算法起到了优化的作用:



5.Matlab代码

相关推荐
SEO_juper8 分钟前
大型语言模型SEO(LLM SEO)完全手册:驾驭搜索新范式
人工智能·语言模型·自然语言处理·chatgpt·llm·seo·数字营销
攻城狮7号1 小时前
腾讯混元翻译模型Hunyuan-MT-7B开源,先前拿了30个冠军
人工智能·hunyuan-mt-7b·腾讯混元翻译模型·30个冠军
superlls1 小时前
(算法 哈希表)【LeetCode 349】两个数组的交集 思路笔记自留
java·数据结构·算法
zezexihaha1 小时前
从“帮写文案”到“管生活”:个人AI工具的边界在哪?
人工智能
算家云1 小时前
nano banana官方最强Prompt模板来了!六大场景模板详解
人工智能·谷歌·ai大模型·算家云·ai生图·租算力,到算家云·nano banana 提示词
暴躁的大熊1 小时前
AI助力决策:告别生活与工作中的纠结,明析抉择引领明智选择
人工智能
Gyoku Mint1 小时前
提示词工程(Prompt Engineering)的崛起——为什么“会写Prompt”成了新技能?
人工智能·pytorch·深度学习·神经网络·语言模型·自然语言处理·nlp
梁小憨憨1 小时前
zotero扩容
人工智能·笔记
大数据张老师1 小时前
AI架构师的思维方式与架构设计原则
人工智能·架构师·ai架构·后端架构
田里的水稻1 小时前
C++_队列编码实例,从末端添加对象,同时把头部的对象剔除掉,中的队列长度为设置长度NUM_OBJ
java·c++·算法