机器学习和数据挖掘01- lasso regularization

概念

Lasso正则化是一种线性回归中的正则化技术,旨在减少模型的复杂性并防止过拟合。Lasso(Least Absolute Shrinkage and Selection Operator)通过在损失函数中添加正则项,促使模型的系数变得稀疏,即某些系数会被压缩到零,从而实现特征选择。

在Lasso正则化中,我们引入了一个惩罚项,它是模型中所有系数的绝对值之和乘以一个参数α。这个参数α控制了惩罚的强度,从而影响了系数是否趋向于零。较大的α值会更强烈地推动系数变为零,从而更多地减少特征数量。

在使用Lasso正则化时,优化问题的目标是最小化以下形式的损失函数:

Loss = MSE + α * Σ|β|

其中,MSE是均方误差,α是惩罚项的强度,β是模型的系数。

使用Lasso正则化有助于防止模型过拟合,并且在具有大量特征的数据集中,可以自动选择对目标变量有更大影响的特征。这使得Lasso在特征选择和降维方面非常有用。

代码实现

python 复制代码
from sklearn.datasets import load_iris
from sklearn.linear_model import Lasso
from sklearn.model_selection import cross_val_score, StratifiedKFold
import numpy as np

# Load example dataset (you can replace this with your own data)
data = load_iris()
X = data.data
y = data.target

# Create a Lasso model
lasso_model = Lasso(alpha=0.1)  # You can adjust the alpha parameter

# Create a StratifiedKFold cross-validation object
cvKFold = StratifiedKFold(n_splits=10, shuffle=True, random_state=0)

# Perform cross-validation using cross_val_score
scores = cross_val_score(lasso_model, X, y, cv=cvKFold)

# Print the cross-validation scores
print("Cross-validation scores:", scores)
print("Mean CV score:", np.mean(scores))
相关推荐
这个男人是小帅16 分钟前
【GAT】 代码详解 (1) 运行方法【pytorch】可运行版本
人工智能·pytorch·python·深度学习·分类
__基本操作__18 分钟前
边缘提取函数 [OPENCV--2]
人工智能·opencv·计算机视觉
Doctor老王22 分钟前
TR3:Pytorch复现Transformer
人工智能·pytorch·transformer
热爱生活的五柒23 分钟前
pytorch中数据和模型都要部署在cuda上面
人工智能·pytorch·深度学习
PcVue China2 小时前
PcVue + SQL Grid : 释放数据的无限潜力
大数据·服务器·数据库·sql·科技·安全·oracle
HyperAI超神经2 小时前
【TVM 教程】使用 Tensorize 来利用硬件内联函数
人工智能·深度学习·自然语言处理·tvm·计算机技术·编程开发·编译框架
Mephisto.java4 小时前
【大数据学习 | HBASE】hbase的读数据流程与hbase读取数据
大数据·学习·hbase
扫地的小何尚4 小时前
NVIDIA RTX 系统上使用 llama.cpp 加速 LLM
人工智能·aigc·llama·gpu·nvidia·cuda·英伟达
埃菲尔铁塔_CV算法6 小时前
深度学习神经网络创新点方向
人工智能·深度学习·神经网络
艾思科蓝-何老师【H8053】7 小时前
【ACM出版】第四届信号处理与通信技术国际学术会议(SPCT 2024)
人工智能·信号处理·论文发表·香港中文大学