机器学习和数据挖掘01- lasso regularization

概念

Lasso正则化是一种线性回归中的正则化技术,旨在减少模型的复杂性并防止过拟合。Lasso(Least Absolute Shrinkage and Selection Operator)通过在损失函数中添加正则项,促使模型的系数变得稀疏,即某些系数会被压缩到零,从而实现特征选择。

在Lasso正则化中,我们引入了一个惩罚项,它是模型中所有系数的绝对值之和乘以一个参数α。这个参数α控制了惩罚的强度,从而影响了系数是否趋向于零。较大的α值会更强烈地推动系数变为零,从而更多地减少特征数量。

在使用Lasso正则化时,优化问题的目标是最小化以下形式的损失函数:

Loss = MSE + α * Σ|β|

其中,MSE是均方误差,α是惩罚项的强度,β是模型的系数。

使用Lasso正则化有助于防止模型过拟合,并且在具有大量特征的数据集中,可以自动选择对目标变量有更大影响的特征。这使得Lasso在特征选择和降维方面非常有用。

代码实现

python 复制代码
from sklearn.datasets import load_iris
from sklearn.linear_model import Lasso
from sklearn.model_selection import cross_val_score, StratifiedKFold
import numpy as np

# Load example dataset (you can replace this with your own data)
data = load_iris()
X = data.data
y = data.target

# Create a Lasso model
lasso_model = Lasso(alpha=0.1)  # You can adjust the alpha parameter

# Create a StratifiedKFold cross-validation object
cvKFold = StratifiedKFold(n_splits=10, shuffle=True, random_state=0)

# Perform cross-validation using cross_val_score
scores = cross_val_score(lasso_model, X, y, cv=cvKFold)

# Print the cross-validation scores
print("Cross-validation scores:", scores)
print("Mean CV score:", np.mean(scores))
相关推荐
jz_ddk8 分钟前
[LVGL] 从0开始,学LVGL:进阶应用与项目实战(上)
linux·信息可视化·嵌入式·gui·lvgl·界面设计
望获linux32 分钟前
【实时Linux实战系列】Linux 内核的实时组调度(Real-Time Group Scheduling)
java·linux·服务器·前端·数据库·人工智能·深度学习
铭毅天下39 分钟前
Elasticsearch 到 Easysearch 数据迁移 5 种方案选型实战总结
大数据·elasticsearch·搜索引擎·全文检索
Dev7z41 分钟前
河南特色农产品识别系统:让AI守护“中原味道”
人工智能
跨境小新41 分钟前
Facebook广告投放:地域定向流量不精准?x个优化指南
大数据·facebook
万俟淋曦1 小时前
【论文速递】2025年第28周(Jul-06-12)(Robotics/Embodied AI/LLM)
人工智能·ai·机器人·大模型·论文·robotics·具身智能
我是李武涯1 小时前
PyTorch DataLoader 高级用法
人工智能·pytorch·python
每月一号准时摆烂1 小时前
PS基本教学(三)——像素与分辨率的关系以及图片的格式
人工智能·计算机视觉
song150265372981 小时前
全自动视觉检测设备
人工智能·计算机视觉·视觉检测
2501_906519671 小时前
大语言模型的幻觉问题:机理、评估与抑制路径探析
人工智能