机器学习和数据挖掘01- lasso regularization

概念

Lasso正则化是一种线性回归中的正则化技术,旨在减少模型的复杂性并防止过拟合。Lasso(Least Absolute Shrinkage and Selection Operator)通过在损失函数中添加正则项,促使模型的系数变得稀疏,即某些系数会被压缩到零,从而实现特征选择。

在Lasso正则化中,我们引入了一个惩罚项,它是模型中所有系数的绝对值之和乘以一个参数α。这个参数α控制了惩罚的强度,从而影响了系数是否趋向于零。较大的α值会更强烈地推动系数变为零,从而更多地减少特征数量。

在使用Lasso正则化时,优化问题的目标是最小化以下形式的损失函数:

Loss = MSE + α * Σ|β|

其中,MSE是均方误差,α是惩罚项的强度,β是模型的系数。

使用Lasso正则化有助于防止模型过拟合,并且在具有大量特征的数据集中,可以自动选择对目标变量有更大影响的特征。这使得Lasso在特征选择和降维方面非常有用。

代码实现

python 复制代码
from sklearn.datasets import load_iris
from sklearn.linear_model import Lasso
from sklearn.model_selection import cross_val_score, StratifiedKFold
import numpy as np

# Load example dataset (you can replace this with your own data)
data = load_iris()
X = data.data
y = data.target

# Create a Lasso model
lasso_model = Lasso(alpha=0.1)  # You can adjust the alpha parameter

# Create a StratifiedKFold cross-validation object
cvKFold = StratifiedKFold(n_splits=10, shuffle=True, random_state=0)

# Perform cross-validation using cross_val_score
scores = cross_val_score(lasso_model, X, y, cv=cvKFold)

# Print the cross-validation scores
print("Cross-validation scores:", scores)
print("Mean CV score:", np.mean(scores))
相关推荐
可为测控4 分钟前
图像处理基础(3):均值滤波器及其变种
图像处理·人工智能·均值算法
刘立军9 分钟前
本地大模型编程实战(20)用langgraph和智能体实现RAG(Retrieval Augmented Generation,检索增强生成)(4)
人工智能·后端·llm
Abdullah al-Sa28 分钟前
Docker教程(喂饭级!)
c++·人工智能·docker·容器
神经星星32 分钟前
无机材料逆合成效率飙升,韩国团队推出Retrieval-Retro,成果入选NeurIPS 2024
人工智能·深度学习·机器学习
大数据追光猿35 分钟前
【深度学习】Pytorch项目实战-基于协同过滤实现物品推荐系统
人工智能·pytorch·python·深度学习·ai编程·推荐算法
m0_7482475541 分钟前
重学SpringBoot3-整合 Elasticsearch 8.x (二)使用Repository
大数据·elasticsearch·jenkins
CodeJourney.1 小时前
EndNote与Word关联:科研写作的高效助力
数据库·人工智能·算法·架构
jingwang-cs1 小时前
内外网文件传输 安全、可控、便捷的跨网数据传输方案
人工智能·后端·安全
南宫文凯1 小时前
Hadoop-HA(高可用)机制
大数据·hadoop·分布式·hadoop-ha
乐享数科1 小时前
乐享数科:供应链金融—三个不同阶段的融资模式
大数据·人工智能·金融