【机器学习】鸢尾花分类-逻辑回归示例

复制代码
这段代码是一个完整的示例,展示了如何使用逻辑回归对鸢尾花数据集进行训练、保存模型,并允许用户输入数据进行预测。以下是对这段代码的总结:

功能: 这段代码演示了如何使用逻辑回归对鸢尾花数据集进行训练,并将训练好的模型保存到文件中。然后,它允许用户输入新的鸢尾花特征数据,使用保存的模型进行预测,并输出预测结果。

步骤概述:

  1. 加载数据和预处理: 使用 Scikit-Learn 中的 datasets 模块加载鸢尾花数据集,并提取前两个特征。然后,划分数据集为训练集和测试集,并对特征数据进行标准化处理。

  2. 训练和保存模型: 创建逻辑回归模型,并在训练集上训练模型。训练完成后,使用 joblib 库将训练好的模型保存到文件中。

  3. 预测: 使用保存的模型,接受用户输入的鸢尾花特征数据(花萼长度和花萼宽度),将其组织成特征向量,然后进行预测。

  4. 结果输出: 根据预测结果输出对应的分类标签,指示预测的鸢尾花属于 Setosa 类别还是非 Setosa 类别(Versicolor 或 Virginica)。

使用方法: 运行代码后,它会首先训练模型并将其保存。然后,你可以输入新的鸢尾花特征数据以进行预测,系统将输出预测结果。

注意事项: 这个示例使用了 joblib 库来保存和加载模型,你也可以使用其他库如 pickle。此外,这个示例演示了逻辑回归在一个简单数据集上的应用,实际应用中可能需要更多的数据处理、模型调优和评估步骤。

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
import joblib  # 用于保存和加载模型
def train_logistic_regression():
    # 加载鸢尾花数据集
    iris = datasets.load_iris()
    # 只使用前两个特征以方便可视化
    X = iris.data[:, :2]  
    # 将标签转换为二分类问题
    y = (iris.target != 0).astype(int)  

    # 划分数据集为训练集和测试集
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

    # 特征标准化
    scaler = StandardScaler()
    X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)

    # 创建逻辑回归模型
    model = LogisticRegression()

    # 在训练集上训练模型
    model.fit(X_train, y_train)

    # 保存训练好的模型
    joblib.dump(model, 'logistic_regression_model.pkl')

def predict_with_saved_model():
    # 加载保存的模型
    model = joblib.load('logistic_regression_model.pkl')

    # 用户输入特征数据
    sepal_length = float(input("Enter sepal length: "))
    sepal_width = float(input("Enter sepal width: "))
    input_data = np.array([[sepal_length, sepal_width]])

    # 进行预测
    prediction = model.predict(input_data)

    if prediction[0] == 0:
        print("Predicted class: Setosa")
    else:
        print("Predicted class: Non-Setosa (Versicolor or Virginica)")

# 训练模型并保存
train_logistic_regression()

# 使用保存的模型进行预测
predict_with_saved_model()
复制代码
输出结果:

Enter sepal length: 5

Enter sepal width: 7

Predicted class: Non-Setosa (Versicolor or Virginica)

复制代码
备注

在这个示例中,sepal length(花萼长度)和 sepal width(花萼宽度)是用于输入的特征。这些特征是鸢尾花数据集中的两个测量值。这些测量值的单位是厘米(cm)。

对于鸢尾花数据集中的这两个特征,以下是一些参考值范围:

sepal length: 大约为 4.3 至 7.9 厘米。

sepal width: 大约为 2.0 至 4.4 厘米。

请注意,这些参考值是基于鸢尾花数据集的统计信息,并且会根据具体数据而有所变化。当你输入新的花萼长度和花萼宽度值进行预测时,请确保输入的值在合理的范围内。

复制代码
相关推荐
牛客企业服务1 小时前
2025校招AI应用:校园招聘的革新与挑战
大数据·人工智能·机器学习·面试·职场和发展·求职招聘·语音识别
计算机科研圈1 小时前
不靠海量数据,精准喂养大模型!上交Data Whisperer:免训练数据选择法,10%数据逼近全量效果
人工智能·深度学习·机器学习·llm·ai编程
欧阳小猜2 小时前
机器学习②【字典特征提取、文本特征处理(TF-IDF)、数据标准化与归一化、特征降维】
人工智能·机器学习·tf-idf
Monkey的自我迭代2 小时前
逻辑回归参数调优实战指南
python·机器学习·逻辑回归·数据处理·下采样·过采样
行然梦实4 小时前
世代距离(GD)和反转世代距离(IGD)详析
人工智能·算法·机器学习·数学建模
CodeShare4 小时前
从噪声数据中发现可解释的常微分方程
机器学习·常微分方程·数据驱动建模
王小王-1234 小时前
基于逻辑回归、随机森林、梯度提升树、XGBoost的广告点击预测模型的研究实现
随机森林·逻辑回归·xgboost·二分类·广告点击预测·广告点击模型
Swaggy T5 小时前
自动驾驶控制算法——PID算法
人工智能·算法·机器学习·自动驾驶
CodeShare6 小时前
通过胜率理解偏好学习的理论与优化方法
机器学习·偏好学习·胜率优化
补三补四8 小时前
Shapley与SHAP
大数据·人工智能·算法·机器学习·数据分析