推荐一本AI+医疗书:《机器学习和深度学习基础以及医学应用》,附21篇精选综述

当代医学仍然存在许多亟待解决的问题,比如日益增加的成本、医疗服务水平的下降...但近几年AI技术的发展却给医疗领域带来了革命性的变化,因此AI+医疗迅速兴起。

从目前已知的成果来看,人工智能在医学领域的应用已经相当广泛,智能诊断、影像识别、语音识别、预防性医学、AI辅助治疗等技术也为我们提供了更加便捷有效的医疗服务。可以看见,AI+医疗会是未来的研究热门与市场指向之一。

既然都是热门了,作为人工智能领域的我们怎么能错过这个好发论文的方向?所以我今天就来和同学们分享AI+医疗领域的资源包了。

这次不仅是整理了21篇AI医疗必读的论文综述,我还发现了一本宝藏书籍。

《机器学习和深度学习在医学中的基础知识》

这本书是由三位大佬联合撰写,为医学学生、研究人员和专业人员提供了机器学习和医学深度学习的基础介绍,只需在本科阶段选修过一门数学入门课程(比如微积分)就可以轻松的读懂!

本书涉及医学数据的数学编码、线性回归和分类、非线性特征工程、深度学习、卷积和循环神经网络、强化学习等知识。每一章以练习集结束,供读者练习和测试所学。

需要全书pdf的同学看文末

21篇必读论文综述

整理的论综述涉及医学图像配准、医学图像分割、迁移学习和多模态融合等细分领域,分享出来主要就是为了帮助大家快速了解AI+医疗的研究现状与方向。

1、A Comprehensive Review of Markov Random Field and Conditional Random Field Approaches in Pathology Image Analysis (病理图像分析中MRF和CRF方法综述

2、Medical Instrument Detection in Ultrasound: A Review (超声引导治疗的医疗器械检测

3、Multiple Sclerosis Lesion Segmentation - A Survey of Supervised CNN-Based Methods (多发性硬化病变分割--基于有监督CNN的方法综述

4、A review: Deep learning for medical image segmentation using multi-modality fusion(多模态融合用于医学图像分割的深度学习综述

5、High-level Prior-based Loss Functions for Medical Image Segmentation: A Survey (基于高层先验损失函数的医学图像分割综述

6、Deep Learning Based Brain Tumor Segmentation: A Survey(基于深度学习的脑肿瘤分割研究综述

7、Medical Image Segmentation Using Deep Learning: A Survey(基于深度学习的医学图像分割研究综述

8、A Survey on Deep Learning for Neuroimaging-based Brain Disorder Analysis (基于神经成像的脑疾病分析深度学习研究综述

9、A Survey on Deep Learning and Explainability for Automatic Report Generation from Medical Images(基于图像的医学报告自动生成的深度学习和可解释性研究综述

10、Learning-Based Algorithms for Vessel Tracking: A Review(基于学习的血管跟踪算法综述

11、Deep Learning in Computer-Aided Diagnosis and Treatment of Tumors: A Survey(计算机辅助肿瘤诊疗中的深度学习研究综述

12、A scoping review of transfer learning research on medical image analysis using ImageNet(利用ImageNet进行医学图像分析的迁移学习研究述评

13、Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans(利用胸片和CT扫描进行冠状病毒检测和预测的机器学习:一项系统方法学综述

14、Towards Automatic Threat Detection: A Survey of Advances of Deep Learning within X-ray Security Imaging (迈向自动威胁检测:X射线安全成像中深度学习进展综述

15、A Review on End-To-End Methods for Brain Tumor Segmentation and Overall Survival Prediction(脑肿瘤的端到端分割和总体生存预测方法综述

16、A Comprehensive Review for Breast Histopathology Image Analysis Using Classical and Deep Neural Networks (使用经典和深层神经网络进行的乳房组织病理学图像分析的全面综述

17、Medical Image Registration Using Deep Neural Networks: A Comprehensive Review(使用深度神经网络的医学图像配准:全面综述

18、3D Bounding Box Detection in Volumetric Medical Image Data: A Systematic Literature Review(体医学图像数据中三维包围盒检测的系统文献综述

19、A Review on Deep Learning Techniques for the Diagnosis of Novel Coronavirus (COVID-19) (新型冠状病毒(冠状病毒)诊断的深度学习技术综述

20、Deep neural network models for computational histopathology: A survey(用于计算组织病理学的深度神经网络模型综述

21、A Survey on Incorporating Domain Knowledge into Deep Learning for Medical Image Analysis (域知识驱动的医学图像深度学习研究综述

关注下方《学姐带你玩AI》🚀🚀🚀

回复"AI医疗"获取全部论文+书籍pdf

码字不易,欢迎大家点赞评论收藏!

相关推荐
CodeLove·逻辑情感实验室1 分钟前
深度解析:当 NLP 试图解构爱情——情感计算(Affective Computing)的伦理边界与技术瓶颈
人工智能·深度学习·自然语言处理·赛朋克
CoovallyAIHub2 小时前
工业视觉检测:多模态大模型的诱惑
深度学习·算法·计算机视觉
万行2 小时前
机器学习&第三章
人工智能·python·机器学习·数学建模·概率论
睡醒了叭3 小时前
目标检测-机器学习-Hog+SVM附代码python)
目标检测·机器学习·计算机视觉
子夜江寒3 小时前
基于贝叶斯的评论分类实例
机器学习·分类
明月照山海-3 小时前
机器学习周报三十
人工智能·机器学习·计算机视觉
shangjian0073 小时前
AI大模型-核心概念-深度学习
人工智能·深度学习
PeterClerk3 小时前
RAG 评估入门:Recall@k、MRR、nDCG、Faithfulness
人工智能·深度学习·机器学习·语言模型·自然语言处理
All The Way North-4 小时前
PyTorch从零实现CIFAR-10图像分类:保姆级教程,涵盖数据加载、模型搭建、训练与预测全流程
pytorch·深度学习·cnn·图像分类·实战项目·cifar-10·gpu加速
人工智能培训4 小时前
10分钟了解向量数据库(4)
人工智能·机器学习·数据挖掘·深度学习入门·深度学习证书·ai培训证书·ai工程师证书