MRI多任务技术及应用

目录


一、定量心血管磁共振成像(CMR)的改进方法

可以将生理运动和其他动态过程概念化为多个时间维度 ,通过 低秩张量(LRT)成像解决运动伪影 ,实现多达四个时间维度的运动解决定量成像。这种连续采集的方法,称之为CMR多任务。使用捕捉运动而非避免运动的方法不需要使用心电图触发或病人憋气,以有效地进行CMR定量成像。

CMR在各种重叠的动态过程中成像 ,包括生理(如心脏跳动、呼吸运动)和物理(如T1、T2弛豫)动态,使得成像过程复杂化。传统处理心血管成像中的动态重叠的策略使用复杂的心电图(ECG)控制、病人屏气和/或短暂的采集"冻结"尽可能多的动态,但这意味着放弃了其余动态的有用的时间,而且在采集中的每个动态都需要采用不同动态所对应的冻结机制组合。

对于那些有心律失常或憋气困难的不健康受试者来说,CMR检查的时间是冗长的。


二、磁共振多任务

**磁共振多任务(multitasking)**是一个连续采集框架,可以 同时解决定量心脑血管成像中涉及的许多重叠的动态 。磁共振多任务将图像动态的不同来源概念化为不同的时间维度,利用多任务来捕捉(而非避免)运动、松弛和其他动态 ,进行时间分辨的T1映射,纠正了动态对比度增强(DCE)成像中的信号饱和问题

LRT图像模型允许磁共振多任务,利用不同时间点的图像之间的相关性来减少采样要求(也可通过压缩、磁共振指纹减少采样),打破了"扫描时间随维度的增加而呈指数级增长"的维度诅咒 。LRT的自由度及其所需的扫描时间与维度的数量呈近似线性关系,适合于多维成像。

图为非心电图、自由呼吸的原生心肌T1图的多个时间维度的说明和分析

a.不同图像在三个时间维度空间的位置。不同的T,加权位于反转时间轴(水平)不同的心动期位于心动时间轴(深度)不同的呼吸期位于呼吸时间轴(垂直)

b.描述图像张量每个维度的三个最重要的基函数 ,由1分钟的数据重建

c.来自12.3分钟的高阶svD的奇异值曲线的原始子空间训练数据(即有足够的数据来覆盖所有的运动状态和对比度组合),表明对于原始数据张量的所有展开,奇异值都会迅速衰减

磁共振多任务处理解决了定量CMR中许多长期的限制

(1)有效地处理了运动,消除了对心电图控制和/或屏气的依赖 ,为心律失常患者进行定量CMR提供了潜在的手段。

(2)纠正了从T1加权成像中量化造影剂浓度的不准确性,允许从单一造影剂中进行量化

(3)简化了工作流程,使用单一的免设置的扫描来产生共同登记(?)的、运动分辨的参数图 ,而不是一连串的错位扫描,每个扫描都涉及一个复杂的设置过程,以确定心电图触发延迟时间、呼吸门控窗口中心和宽带,和/或选择适当图像对比度的时间参数。

该方法允许灵活的采样有效的因子张量重建 。与磁共振指纹不同的是,除了核磁共振松弛外,它还能 对运动和DCE进行成像 。此外,由于CMR多任务与LRT成像可以扫描广泛的"自然"成像对比(即与磁共振指纹的随机图像对比相反),多任务产生的图像也可能反过来验证它们的准确性。

LRT成像不同于其他多为成像方法 ,如XD-GRASP通过隐含地假设沿每个时间维度横向片状恒定演化来利用图像的"局部"相似性,而LRT成像则全面利用了在整个多维时间空间中的图像的横向和对角线上都有的相关性


三、磁共振多任务的成像框架

CMR多任务****将一组心脑血管图像表示为一个多为张量(或阵列) ,其中一个维度索引体素位置(即结合空间维度),其他维度索引N个不同的时间维度每个维度对应于要成像的不同"任务" 。通过对这个张量进行低秩的建模,我们描述并利用图像的相关性(沿着每个时间维度和整个多维时间维度的对角线)。

通过将稀疏采样的图像数据与经常对K空间子集进行采样的辅助子空间训练数据交错获取数据,为图像重建开发了一种记忆和时间效率高的因子方法,其中核心张量和N个时间因子矩阵是从子空间训练数据中估计出来的,空间因子矩阵是通过将核心张量和时间因子矩阵与测量数据的其余部分进行拟合而恢复的。

CMR多任务技术用于非心电图、自由呼吸的原生心肌T1图

a.CMR多任务技术产生了沿反转时间维度的精细分辨的对比度变化

b.多任务技术产生的心脏分辨的T1图


四、磁共振多任务的图像模型和采样和重建策略

CMR多任务心血管图像表示为空间位置的多维函数I(x,t1,t2,...tN)和N个时间维度t1,t2,...tN每个时间维度对应要解决的不同"任务" ,例如时间维度对应于心脏运动、呼吸运动、磁化准备后的时间(沿途的信号演变取决于组织特性参数,如T1和T2)和成像开始后的时间(对描述通过的时间很有用)。

尽管LRT模型释放了从维度诅咒中获得的采样要求 ,但N+1路张量(或称多维数组)A的大小仍然是指数级的增长。因此,通过单值分解(SVD)阈值化解决方案涉及的相同大小的辅助变量,以未压缩的形式存储图像I用离散形式表示为的N+1路张量(或称多维数组)A对内存的要求是非常高的。此外,图像重建算法的每一次迭代都可能涉及到对A的每一列 (其数量可能达到数十万)的操作 ,以及大矩阵的多个SVD,所有这些都需要大量的计算时间。

训练数据比K空间的其他位置需要更频繁的采样。这个数据子集("子空间训练数据")包含有限的空间信息,但有大量适合确定Φ的时间信息。收集的数据要足够频繁,以解决最精细的生理学问题。

如果有序的均匀采样与时间基础函数一致,例如定期采样与呼吸周期、心动周期或磁化准备期同步,这时有序的均匀采样的采样性能会得到心脏和呼吸频率变化的加持。磁化准备时间表通常正好是周期性的,但准备期和采样期的选择可以避免相互同步。为了避免这些问题,可以采用黄金角径向取样或随机笛卡尔取样的采样方案,即使在周期性运动的情况下也能提供不连贯性。

CMR多任务处理非心电图,第一道心肌灌注T绘图

a.对比剂动态被捕捉到的收缩期和舒张期心脏阶段

b.这是由于该方法能够解决心脏运动

c.经过的时间维度(用于描绘对比剂动态)和饱和时间维度相结合,产生二维信号强度表面,而不是传统的一维信号强度曲线

d.这些信号强度表面被用来绘制R(t),它考虑了信号饱和度,并在线性转换后直接得到Gd浓度


五、利用MR多任务进行快速三维稳态CEST(ss-CEST)成像

5.1 利用MR多任务进行快速三维稳态CEST(ss-CEST)成像介绍

化学交换饱和转移是―种非对比性的MRI技术 ,通过在不同的频率偏移下的预饱和,间接地检测出pool中的可交换元化学交换饱和转移核磁共振成像 提供了一种新的对比机制来成像重要的生理学信息,如在交换质子池和水池之间的PH值和me-tabolite浓度。在不同的饱和频率下收集图像,产生所谓的Z谱,它反映了在给定饱和功率下采样频率偏移的稳态信号

Z谱的广泛和对称覆盖允许多池分析,同时揭示不同的CEST效应(如酰胺质子转移(APT)、中继核Overhauser增强(rNOE)效应),以及其他特定的应用效应(如糖化CEST、CrCEST和糖化NOE)。为了实现可靠的多池分析,通常要对宽Z谱进行密集采样。考虑到通常采样的几十个频率偏移,每个频率偏移的采集时间(包括长的饱和模块)最好限制在几秒钟,以保持临床实践中可接受的扫描时间。这种时间限制通常只允许对饱和模块后的每个频率偏移进行单次K空间采集。这种单次拍摄方案使得快速、高质量的三维CEST成像变得困难

(A)序列设计:每个模块(TR=70 ms)包含一个单叶高斯饱和脉冲(txat = 30 ms,翻转角=500°),然后是一个扰流梯度和八个FLASH读出线(一个训练线加七个成像线;翻转角=5°)

该模块在一个特定的频率偏移(Nw=80)处重复,然后切换到另一个

(B)k-空间采样模式:在每个模块中﹐首先获得"训练线"(中心k空间线),然后是七条"成像线"(在xy和ga方向具有高斯分布的伪随机采样线)


5.2 利用MR多任务进行快速三维稳态CEST(ss-CEST)成像

通过优化K空间采样效率,如使用螺旋中心重排序的K空间采集进行快照梯度回波(GRE)读出,或使用CAIPIRINHA下采样的三维EPI读出,缩短了扫描时间。它可以提供1.7×1.7毫米的2面内分辨率,FOV为220×180×54毫米,使用三维GRE读出,每次偏移7秒获得,使用三维EPI读出,每次偏移4.3秒获得1.8毫米的同向分辨率,FOV为256×224×156毫米

一种潜在的更快的方法,即稳态CEST(ss-CEST)方法以重复模块的交错模式进行预饱和和k空间采样 以确保饱和交换稳态在每个频率偏移的大部分时间内保持不变,交错模式在序列设计和可能的加速方面提供了更多的灵活性。

但是最初的ss-CEST方法需要12分钟以上的时间来获取整个Z谱,这对于实际使用来说仍然太长。我们可将径向读出与多线奇异值分解相结合 ,进一步减少总的扫描时间,使其少于5分钟。与以前的ss-CEST方法相比,每个频率偏移的采集时间从10多秒减少到7.6秒。

磁共振多任务是一种低秩张量的成像策略 。通过低秩张量建模,利用在不同频率偏移下获得的图像之间的相关性,以及在接近稳态期间的数据之间的相关性,以减少扫描时间并提高图像质量。这样就可以在5.5分钟内获得覆盖全脑的1.7×1.7×3.0毫米的Z谱的空间分辨率。

二维单次FLASH法(A)和拟议的多任务ss-CEST法(B)所产生的map的比较

注意二维单次FLASH CEST方法中使用的切片厚度为10毫米,大于拟议的三维多任务ss-CEST方法中的3毫米。因此,尽管(A)和(B)之间的切片中心相匹配,但空间覆盖率并不完全相同。


5.3 利用MR多任务进行快速三维稳态CEST(ss-CEST)成像的讨论

与单次采集方法(或假稳态方法)相比 ,ss-CEST方法确保化学交换过程的稳态在大部分采集时间内得到保持。与单次拍摄方法相比﹐它允许连续采集,以便更有效地穿越K空间。但在原始ss-cEST实现中,仅在平行成像中拥有额外加速源

而MR-Multitasking中的低秩张量模相对于两个单独的序列参数维度:频率偏移和频率增加后的时间,强制执行综合空间维度的低秩性(因此没有对空间结构进行假设)。此外,多任务系统在图像重建过程中采用这种模式来加速采集。

除了加速采集,多作务ss-CEST方法还有两个额外的优点:

(1)在每个频率偏移处的稳态方法被建模,稳态之前的信号被排除 ,允许使用未被破坏的稳态值进行量化。

(2)Z谱在低秩约束下被自动去噪 。考虑到足够的时空关系,加速的唯一明确限制因素为在每个频率偏移处达到稳定状态所的时间

还可以进一步优化多作务ss-CEST方法 。首先,我们可以利用先进的K-空间采样轨迹,例如非笛卡尔轨迹(如螺旋线),有可能比笛卡尔采集提高采样效率和不连贯性进一步减少扫描时间和提高图像质量

其次,可以 进一步优化特定频率偏移的采样模式,以减少采样频率的总数,这样就可以减少总的扫描时间,同时保持多pool拟合数据的可靠性和稳健性。

相关推荐
程序小旭1 小时前
机器视觉基础—双目相机
计算机视觉·双目相机
pianmian12 小时前
python数据结构基础(7)
数据结构·算法
AI极客菌3 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭3 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^3 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
好奇龙猫4 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
sp_fyf_20245 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
香菜大丸5 小时前
链表的归并排序
数据结构·算法·链表
jrrz08285 小时前
LeetCode 热题100(七)【链表】(1)
数据结构·c++·算法·leetcode·链表
oliveira-time5 小时前
golang学习2
算法