Python Opencv实践 - 轮廓检测

复制代码
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread("../SampleImages/map.jpg")
print(img.shape)
plt.imshow(img[:,:,::-1])

#Canny边缘检测
edges = cv.Canny(img, 127, 255, 0)
plt.imshow(edges, cmap=plt.cm.gray)

#查找轮廓
#cv.findContours(image, mode, method[, contours[, hierarchy[, offset ]]])
#image: 原图
#mode: 轮廓模式
#    cv2.RETR_EXTERNAL表示只检测外轮廓
#    cv2.RETR_LIST检测的轮廓不建立等级关系
#    cv2.RETR_CCOMP建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。如果内孔内还有一个连通物体,这个物体的边界也在顶层。
#    cv2.RETR_TREE建立一个等级树结构的轮廓。
#method: 轮廓的近似方法
#    cv2.CHAIN_APPROX_NONE存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max(abs(x1-x2),abs(y2-y1))==1
#    cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
#    cv2.CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS使用teh-Chinl chain 近似算法
#返回值: opencv2返回两个值:contours:hierarchy。注:opencv3会返回三个值,分别是img, countours, hierarchy
#参考资料:https://blog.csdn.net/leemboy/article/details/84932885
contours,hierachy = cv.findContours(edges, cv.RETR_TREE, cv.CHAIN_APPROX_NONE)

#绘制轮廓
#cv.drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset ]]]]]) 
#image:原图
#contours: 轮廓数据
#contouridx:要绘制的轮廓的index,如果是-1,表示绘制所有轮廓。
#color,thickness,lineType: 轮廓线条颜色,厚度和线的类型
img = cv.drawContours(img, contours, -1, (0,255,0), 2)

plt.imshow(img[:,:,::-1])

相关推荐
2501_941982059 小时前
展望:RPA与AI在企业微信自动化领域的未来融合趋势
人工智能·企业微信·rpa
小脉传媒GEO优化9 小时前
GEO优化数据统计系统DeepAnaX系统详细介绍:开启AI数据智能分析新范式
人工智能·信息可视化
爱笑的眼睛119 小时前
MLflow Tracking API:超越实验记录,构建可复现的机器学习工作流
java·人工智能·python·ai
世岩清上9 小时前
以技术预研为引擎,驱动脑机接口等未来产业研发与应用创新发展
人工智能·脑机接口·未来产业
YuforiaCode9 小时前
黑马AI大模型神经网络与深度学习课程笔记(个人记录、仅供参考)
人工智能·笔记·深度学习
小白学大数据9 小时前
Python 爬虫如何分析并模拟 JS 动态请求
开发语言·javascript·爬虫·python
八月ouc9 小时前
Python实战小游戏(一):基础计算器 和 猜数字
python·小游戏·猜数字·条件判断·基础计算器·控制流
Christo39 小时前
NIPS-2022《Wasserstein K-means for clustering probability distributions》
人工智能·算法·机器学习·数据挖掘·kmeans
zoujiahui_20189 小时前
python中模型加速训练accelerate包的用法
开发语言·python
咚咚王者9 小时前
人工智能之数学基础 线性代数:第五章 张量
人工智能·线性代数