OpenCV(三十七):拟合直线、三角形和圆形

1.点集拟合的含义

点集拟合是一种通过拟合函数或曲线来近似描述给定离散数据点的技术,在点集拟合中,可以使用不同的函数或曲线拟合方法来拟合直线、三角形和圆形。

直线拟合:对于给定的二维数据点集合,可以使用最小二乘法来拟合一条直线。

三角形拟合: 对于给定的二维或三维数据点集合,可以使用三角形拟合方法来找到尽可能逼近数据点的最佳三角形。

圆形拟合: 对于给定的二维数据点集合,可以使用圆形拟合方法来找到与数据点分布最佳匹配的圆。

2.拟合直线的函数fitLine()

void cv::fitLine ( InputArray points,

OutputArray line,

int distType,

double param,

double reps,

double aeps

)

  • points:输入待拟合直线的2D或者3D点集。
  • line:输出描述直线的参数,2D点集描述参数为Vec4f类型,3D点集描述参数为Vec6f类型distType:M-estimator算法使用的距离类型标志。
  • param:某些类型距离的数值参数(C)。如果数值为0,则自动选择最佳值。
  • reps: 坐标原点与直线之间的距离精度,数值0表示选择自适应参数,一般常选择0.01
  • aeps:直线角度精度,数值0表示选择自适应参数,一般常选择0.01。

距离类型选择标志

示例代码:

复制代码
 //直线拟合
    Vec4f lines;//存放拟合后的直线
    vector<Point2f> point;//待检测是否存在直线的所有点
    const static float Points[20][2]={
            {0.0f,0.0f},{10.0f,11.0f},{21.0f,20.0f},{30.0f,30.0f},
            {40.0f,42.0f},{50.0f,50.0f},{60.0f,60.0f},{70.0f,70.0f},
            {80.0f,80.0f},{90.0f,92.0f},{100.0f,100.0f},{110.0f,110.0f},
            {120.0f,120.0f},{136.0f,130.0f},{138.0f,140.0f},{150.0f,150.0f},
            {160.0f,163.0f},{175.0f,170.0f},{181.0f,180.0f},{200.0f,190.0f},
    };
    //将所有点存放在vector中,用于输入函数中
    for(int i=0;i<20;i++){
        point.push_back(Point2f(Points[i][0],Points[i][1]));
    }
    //参数设置
    double param=0;//距离模型中的数值参数C
    double reps=0.01;//坐标原点与直线之间的距离精度
    double aeps=0.01;//角度精度
    fitLine(point,lines,DIST_L1,0,0.01,0.01);
    double k=lines[1]/lines[0];//直线斜率
    ostringstream ss;
    ss<<"直线效率:"<<k<<endl;
    ss<<"直线上一点坐标x:"<<lines[2]<<",y:"<<lines[3]<<endl;
    ss<<"直线解析式:y="<<k<<"(x-"<<lines[2]<<")+"<<lines[3]<<endl;
    LOGD("%s",ss.str().c_str());

运行结果:

3.拟合三角形的函数 minEnclosingTriangle()

double cv::minEnclosingTriangle ( InputArray points,OutputArray triangle)

  • points:待寻找包围三角形的2D点集
  • triangle:拟合出的三角形三个顶点坐标

4.拟合三角形的函数 minEnclosingTriangle()

minEnclosingCircle()

void cv::minEnclosingCircle ( InputArray points,

Point2f &center,

float &radius

  • points:待寻找包围圆形的2D点集
  • center:圆形的圆心。
  • radius:圆形的半径

拟合三角形和圆形的示例代码:

复制代码
//点集拟合
void Point_set_fitting(){
  
    Mat img(500,500,CV_8UC3,Scalar::all(0));
    RNG &rng=theRNG();

    int i,count=rng.uniform(1,101);
    vector<Point> points;
    //生成随机点
    for(i=0;i<count;i++){
            Point  pt;
            pt.x=rng.uniform(img.cols/4,img.cols*3/4);
            pt.y=rng.uniform(img.rows/4,img.rows*3/4);
            points.push_back(pt);
    }
    //寻找包围点集的三角形
    vector<Point2f> triangle;
    double area= minEnclosingTriangle(points,triangle);
    //寻找包围点集的圆形
    Point2f center;
    float radius=0;
    minEnclosingCircle(points,center,radius);

    //创建两个图片用于输出结果
    img=Scalar ::all(0);
    Mat img2;
    img.copyTo(img2);
    //在图像中绘制坐标点
    for(i=0;i<count;i++){
        circle(img,points[i],3,Scalar(255,255,255),FILLED,LINE_AA);
        circle(img2,points[i],3,Scalar(255,255,255),FILLED,LINE_AA);
    }
    //绘制三角形
    for(i=0;i<3;i++){
        if(i==2){
            line(img,triangle[i],triangle[0],Scalar(255,255,255),1,16);
            break;
        }
        line(img,triangle[i],triangle[i+1],Scalar(255,255,255),1,16);
    }
    //绘制圆形
    circle(img2,center, cvRound(radius),Scalar(255,255,255),1,LINE_AA);

    //显示图像
    imwrite("/sdcard/DCIM/img.png",img);
    imwrite("/sdcard/DCIM/img2.png",img2);

}

三角形拟合的结果:

圆形拟合的结果:

相关推荐
rocksun3 小时前
认识Embabel:一个使用Java构建AI Agent的框架
java·人工智能
Java中文社群4 小时前
AI实战:一键生成数字人视频!
java·人工智能·后端
AI大模型技术社4 小时前
🔧 PyTorch高阶开发工具箱:自定义模块+损失函数+部署流水线完整实现
人工智能·pytorch
LLM大模型4 小时前
LangChain篇-基于SQL实现数据分析问答
人工智能·程序员·llm
LLM大模型4 小时前
LangChain篇-整合维基百科实现网页问答
人工智能·程序员·llm
DeepSeek忠实粉丝4 小时前
微调篇--基于GPT定制化微调训练
人工智能·程序员·llm
聚客AI5 小时前
💡 图解Transformer生命周期:训练、自回归生成与Beam Search的视觉化解析
人工智能·llm·掘金·日新计划
神经星星6 小时前
从石英到铁电材料,哈佛大学提出等变机器学习框架,加速材料大规模电场模拟
人工智能·深度学习·机器学习
摆烂工程师6 小时前
Google One AI Pro 的教育学生优惠即将在六月底结束了!教你如何认证Gemini学生优惠!
前端·人工智能·后端
陈明勇7 小时前
MCP 官方开源 Registry 注册服务:基于 Go 和 MongoDB 构建
人工智能·后端·mcp