现代卷积网络实战系列6:PyTorch从零构建ResNet训练MNIST数据集

1、MNIST数据集处理、加载、网络初始化、测试函数

2、训练函数、PyTorch构建LeNet网络

3、PyTorch从零构建AlexNet训练MNIST数据集

4、PyTorch从零构建VGGNet训练MNIST数据集

5、PyTorch从零构建GoogLeNet训练MNIST数据集

6、PyTorch从零构建ResNet训练MNIST数据集

1、ResNet

2、PyTorch构建残差块Residual

python 复制代码
class Residual(nn.Module):
    def __init__(self, in_channel, out_channel, stride, upsamlpe):
        super(Residual, self).__init__()
        self.conv1 = nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=stride, padding=1)
        self.conv2 = nn.Conv2d(out_channel, out_channel, kernel_size=3, stride=1, padding=1)
        self.conv3 = nn.Conv2d(in_channel, out_channel, kernel_size=1, stride=stride)

        self.bn1 = nn.BatchNorm2d(out_channel, affine=False)
        self.bn2 = nn.BatchNorm2d(out_channel, affine=False)

        self.relu1 = nn.ReLU()
        self.relu2 = nn.ReLU()

    def forward(self, x):
        out = self.relu1(self.bn1(self.conv1(x)))

        out = self.bn2(self.conv2(out))

        x = self.conv3(x)
        out = self.relu2(out + x)

        # print(out.shape)

        return out

3、PyTorch构建ResNet

python 复制代码
class ResNet(nn.Module):
    def __init__(self, num_classes):
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 64, kernel_size=1)
        self.maxpool1 = nn.MaxPool2d(3, stride=2, padding=1)

        self.resblock1 = Residual(64, 64, 1, True)
        self.resblock2 = Residual(64, 64, 1, True)
        self.resblock3 = Residual(64, 128, 2, True)
        self.resblock4 = Residual(128, 128, 1, True)
        self.resblock5 = Residual(128, 256, 1, True)
        self.resblock6 = Residual(256, 256, 1, True)
        self.resblock7 = Residual(256, 512, 1, True)
        self.resblock8 = Residual(512, 512, 1, True)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512, num_classes)

    def forward(self, x):
        x = self.maxpool1(self.conv1(x))
        x = self.resblock1(x)
        x = self.resblock2(x)
        x = self.resblock3(x)
        x = self.resblock4(x)
        x = self.resblock5(x)
        x = self.resblock6(x)
        x = self.resblock7(x)
        x = self.resblock8(x)

        x = self.avgpool(x)
        x = x.reshape(x.shape[0], -1)
        x = self.fc(x)

        return x
相关推荐
AI即插即用8 分钟前
即插即用系列 | Attention GhostUNet++:基于多维注意力和 Ghost 模块的高效 CT 图像脂肪与肝脏分割网络
网络·图像处理·人工智能·深度学习·神经网络·计算机视觉·视觉检测
猎人everest30 分钟前
LangChain 与其他大语言模型框架有什么区别
人工智能·语言模型·langchain
jkyy201441 分钟前
端到端生态闭环:智能硬件+云平台+应用终端,最大化穿戴设备价值
大数据·人工智能·物联网·健康医疗
新程记1 小时前
2025年CAIE认证含金量透视:它如何成为AI时代的“技能护照”?
人工智能
哥布林学者1 小时前
吴恩达深度学习课程四:计算机视觉 第一周:卷积基础知识(二)卷积参数
深度学习·ai
学历真的很重要1 小时前
PyTorch 机器学习工作流程基础 - 完整教程
人工智能·pytorch·后端·python·深度学习·机器学习·面试
百度Geek说2 小时前
百度慧播星数字人技术演进
人工智能
李昊哲小课2 小时前
深度学习高级教程:基于生成对抗网络的五子棋对战AI
人工智能·深度学习·生成对抗网络
TDengine (老段)2 小时前
TDengine IDMP 产品路线图
大数据·数据库·人工智能·ai·时序数据库·tdengine·涛思数据
hoiii1872 小时前
MATLAB中主成分分析(PCA)与相关性分析的实现
前端·人工智能·matlab