现代卷积网络实战系列6:PyTorch从零构建ResNet训练MNIST数据集

1、MNIST数据集处理、加载、网络初始化、测试函数

2、训练函数、PyTorch构建LeNet网络

3、PyTorch从零构建AlexNet训练MNIST数据集

4、PyTorch从零构建VGGNet训练MNIST数据集

5、PyTorch从零构建GoogLeNet训练MNIST数据集

6、PyTorch从零构建ResNet训练MNIST数据集

1、ResNet

2、PyTorch构建残差块Residual

python 复制代码
class Residual(nn.Module):
    def __init__(self, in_channel, out_channel, stride, upsamlpe):
        super(Residual, self).__init__()
        self.conv1 = nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=stride, padding=1)
        self.conv2 = nn.Conv2d(out_channel, out_channel, kernel_size=3, stride=1, padding=1)
        self.conv3 = nn.Conv2d(in_channel, out_channel, kernel_size=1, stride=stride)

        self.bn1 = nn.BatchNorm2d(out_channel, affine=False)
        self.bn2 = nn.BatchNorm2d(out_channel, affine=False)

        self.relu1 = nn.ReLU()
        self.relu2 = nn.ReLU()

    def forward(self, x):
        out = self.relu1(self.bn1(self.conv1(x)))

        out = self.bn2(self.conv2(out))

        x = self.conv3(x)
        out = self.relu2(out + x)

        # print(out.shape)

        return out

3、PyTorch构建ResNet

python 复制代码
class ResNet(nn.Module):
    def __init__(self, num_classes):
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 64, kernel_size=1)
        self.maxpool1 = nn.MaxPool2d(3, stride=2, padding=1)

        self.resblock1 = Residual(64, 64, 1, True)
        self.resblock2 = Residual(64, 64, 1, True)
        self.resblock3 = Residual(64, 128, 2, True)
        self.resblock4 = Residual(128, 128, 1, True)
        self.resblock5 = Residual(128, 256, 1, True)
        self.resblock6 = Residual(256, 256, 1, True)
        self.resblock7 = Residual(256, 512, 1, True)
        self.resblock8 = Residual(512, 512, 1, True)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512, num_classes)

    def forward(self, x):
        x = self.maxpool1(self.conv1(x))
        x = self.resblock1(x)
        x = self.resblock2(x)
        x = self.resblock3(x)
        x = self.resblock4(x)
        x = self.resblock5(x)
        x = self.resblock6(x)
        x = self.resblock7(x)
        x = self.resblock8(x)

        x = self.avgpool(x)
        x = x.reshape(x.shape[0], -1)
        x = self.fc(x)

        return x
相关推荐
Gyoku Mint4 分钟前
深度学习×第4卷:Pytorch实战——她第一次用张量去拟合你的轨迹
人工智能·pytorch·python·深度学习·神经网络·算法·聚类
zzywxc7877 分钟前
AI大模型的技术演进、流程重构、行业影响三个维度的系统性分析
人工智能·重构
点控云7 分钟前
智能私域运营中枢:从客户视角看 SCRM 的体验革新与价值重构
大数据·人工智能·科技·重构·外呼系统·呼叫中心
zhaoyi_he15 分钟前
多模态大模型的技术应用与未来展望:重构AI交互范式的新引擎
人工智能·重构
葫三生1 小时前
如何评价《论三生原理》在科技界的地位?
人工智能·算法·机器学习·数学建模·量子计算
m0_751336392 小时前
突破性进展:超短等离子体脉冲实现单电子量子干涉,为飞行量子比特奠定基础
人工智能·深度学习·量子计算·材料科学·光子器件·光子学·无线电电子
美狐美颜sdk5 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程6 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
有Li6 小时前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
郭庆汝6 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python